Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2002 Dec;28(4):745–764. doi: 10.1023/A:1021207310080

A 21st Century View of Evolution

JA Shapiro
PMCID: PMC3456457  PMID: 23345811

Abstract

Physicists question whether there are ‘universals’ in biology. One reason is that the prevailing theory of biological evolution postulates a random walk to each new adaptation. In the last 50 years, molecular genetics has revealed features of DNA sequence organization, protein structure and cellular processes of genetic change that suggest evolution by Natural Genetic Engineering. Genomes are hierarchically organized as systems assembled from DNA modules. Each genome is formatted and integrated by repetitive DNA sequence elements that do not code for proteins, much as a computer drive is formatted. These formatting elements constitute codons in multiple genetic codes for distinct functions such as transcription, replication, DNA compaction and genome distribution to daughter cells. Consequently, there is a computation-ready Genome System Architecture for each species. Whole-genome sequencing indicates that rearrangement of genetic modules plus duplication and reuse of existing genomic systems are fundamental events in evolution. Studies of genetic change show that cells possess mobile genetic elements and other natural genetic engineering activities to carry out the necessary DNA reorganizations. Natural genetic engineering functions are sensitive to biological inputs and their non-random operations help explain how novel genome system architectures can arise in evolution.

Keywords: cellular computation, DNA rearrangements, genome system architecture, mobile genetic elements, natural genetic engineering, repetitive DNA, signal transduction

Full Text

The Full Text of this article is available as a PDF (178.2 KB).

References

  • 1.Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3rd ed. New York: Garland; 1994. [Google Scholar]
  • 2.Gerhart J., Kirschner M. Cells, Embryos and Evolution. London: Blackwell; 1997. [Google Scholar]
  • 3.Caporale L. Molecular Strategies for Biological Evolution. New York: New York Acad. Sci.; 1999. [PubMed] [Google Scholar]
  • 4.McDonald J.F. Transposable Elements & Genome Evolution. Dordrecht: Kluwer; 2000. [Google Scholar]
  • 5.McClintock B. The Discovery and Characterization of Transposable Elements. New York: Garland; 1987. [Google Scholar]
  • 6.Bukhari A.I., Shapiro J.A., Adhya S.L., editors. DNA Insertion Elements, Episomes and Plasmids. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1977. [Google Scholar]
  • 7.Shapiro J.A., editor. Mobile Genetic Elements. New York: Academic Press; 1983. [Google Scholar]
  • 8.Berg D.E., Howe M.M., editors. Mobile DNA. Washington, D.C.: American Society for Microbiology Press; 1989. [Google Scholar]
  • 9.Shapiro J.A. Natural Genetic Engineering in Evolution. Genetica. 1992;86:99–111. doi: 10.1007/BF00133714. [DOI] [PubMed] [Google Scholar]
  • 10.Shapiro J.A. Genome System Architecture and Natural Genetic Engineering in Evolution. Annal. NY Acad. Sci. 1999;870:23–35. doi: 10.1111/j.1749-6632.1999.tb08862.x. [DOI] [PubMed] [Google Scholar]
  • 11.Shapiro J.A. Transposable Elements as the Key to a 21st Century View of Evolution. Genetica. 1999;107:171–179. [PubMed] [Google Scholar]
  • 12.Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. Viable Offspring derived from Fetal and Adult Mammalian Cells. Nature. 1997;385:810–813. doi: 10.1038/385810a0. [DOI] [PubMed] [Google Scholar]
  • 13.Rideout W.M., III, Eggan K., Jaenisch R. Nuclear Cloning and Epigenetic Reprogramming of the Genome. Science. 2001;293:1093–1098. doi: 10.1126/science.1063206. [DOI] [PubMed] [Google Scholar]
  • 14.Doolittle R.F. The Multiplicity of Domains in Proteins. Annu. Rev. Biochem. 1995;64:287–314. doi: 10.1146/annurev.bi.64.070195.001443. [DOI] [PubMed] [Google Scholar]
  • 15.Reznikoff W.S. The Lactose Operon-Controlling Elements: A Complex Paradigm. Mol. Microbiol. 1992;64:2419–2422. doi: 10.1111/j.1365-2958.1992.tb01416.x. [DOI] [PubMed] [Google Scholar]
  • 16.Shapiro J.A. Genome Organization, Natural Genetic Engineering, and Adaptive Mutation. Trends in Genetics. 1997;13:98–104. doi: 10.1016/s0168-9525(97)01058-5. [DOI] [PubMed] [Google Scholar]
  • 17.Britten R.J., Davidson E.H. Gene Regulation for Higher Cells: A Theory. Science. 1969;165:349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
  • 18.Kalir S., McClure J., Pabbaraju K., Southward C., Ronen M., Leibler S., Surette M.G., Alon U. Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria. Science. 2001;292:2080–2083. doi: 10.1126/science.1058758. [DOI] [PubMed] [Google Scholar]
  • 19.Arnone M.I., Davidson E.H. The Hardwiring of Development: Organization and Function of Genomic Regulatory Systems. Development. 1997;124:1851–1864. doi: 10.1242/dev.124.10.1851. [DOI] [PubMed] [Google Scholar]
  • 20.Yuh C.H., Bolouri H., Davidson E.H. Genomic cis-regulatory Logic: Experimental and Computational Analysis of a Sea Urchin Gene. Science. 1998;279:1896–1902. doi: 10.1126/science.279.5358.1896. [DOI] [PubMed] [Google Scholar]
  • 21.International Human Genome Sequencing Consortium: Initial Sequencing and Analysis of the Human Genome, Nature409 (2001), 860–921. [DOI] [PubMed]
  • 22.Venter J.C., et al. The Sequence of the Human Genome. Science. 2001;291:1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  • 23.http://web.uvic.cal/∼bioweb/people/choy/dlevin/Forensic/index.htm
  • 24.Bell A.C., West A.G., Felsenfeld G. Insulators and Boundaries: Versatile Regulatory Elements in the Eukaryotic Genome. Science. 2001;291:447–450. doi: 10.1126/science.291.5503.447. [DOI] [PubMed] [Google Scholar]
  • 25.Misteli T. Protein Dynamics: Implications for Nuclear Architecture and Gene Expression. Science. 2001;291:843–847. doi: 10.1126/science.291.5505.843. [DOI] [PubMed] [Google Scholar]
  • 26.Gilbert W. Why genes in pieces? Nature. 1978;271:501. doi: 10.1038/271501a0. [DOI] [PubMed] [Google Scholar]
  • 27.Patel, N.H. and Prince, V.E.: Beyond the Hox complex, Genome Biology1 (2000): reviews 1027.1- 1027.4 The electronic version of this article is the complete one: http://genomebiology.com/2000/1/5/reviews/1027. [DOI] [PMC free article] [PubMed]
  • 28.The Arabidopsis Genome Initiative: Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana, Nature408 (2000), 796–815. [DOI] [PubMed]
  • 29.Ohno S. Evolution by Gene Duplication. New York: Springer-Verlag; 1970. [Google Scholar]
  • 30.Graham M. Cereal Genome Evolution: Pastoral Pursuits with ‘Lego’ Genomes. Curr. Op. in Genet. & Devel. 1995;5:717–724. doi: 10.1016/0959-437x(95)80003-n. [DOI] [PubMed] [Google Scholar]
  • 31.Dehal P., et al. Human Chromosome 19 and Related Regions in Mouse: Conservative and Lineage-Specific Evolution. Science. 2001;293:104–111. doi: 10.1126/science.1060310. [DOI] [PubMed] [Google Scholar]
  • 32.Kunkel T.A., Bebenek K. DNA Replication Fidelity. Annu. Rev. Biochem. 2000;69:497–529. doi: 10.1146/annurev.biochem.69.1.497. [DOI] [PubMed] [Google Scholar]
  • 33.http://www.nih.gov/sigs/dna-rep/whatis.html
  • 34.Goodman M.F. Mutagenesis: Purposeful Mutations. Nature. 1998;395:221–223. doi: 10.1038/26111. [DOI] [PubMed] [Google Scholar]
  • 35.Shapiro J.A. Natural Genetic Engineering, Adaptive Mutation & Bacterial Evolution. In: Rosenberg E., editor. Microbial Ecology and Infectious Disease. Washington: ASM Press; 1999. pp. 259–275. [Google Scholar]
  • 36.Haber J.E. Partners and Pathways: Repairing a Double-Strand Break. Trends Genet. 2000;16:259–264. doi: 10.1016/s0168-9525(00)02022-9. [DOI] [PubMed] [Google Scholar]
  • 37.Craig N.L. Unity in Transposition Reactions. Science. 1995;270:253–254. doi: 10.1126/science.270.5234.253. [DOI] [PubMed] [Google Scholar]
  • 38.Shapiro J.A. A Molecular Model for the Transposition and Replication of Bacteriophage Mu and Other Transposable Elements. Proc. Nat. Acad. Sci. U.S.A. 1979;76:1933–1937. doi: 10.1073/pnas.76.4.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Boeke J.D., Corces V.G. Transcription and Reverse Transcription of Retrotransposons. Annu. Rev. Microbiol. 1989;43:403–434. doi: 10.1146/annurev.mi.43.100189.002155. [DOI] [PubMed] [Google Scholar]
  • 40.Deiningen P.L.: SINEs: Short Interspersed Repeat DNA Elements in Higher Eucaryotes, In ref. 8, pp. 619–636.
  • 41.Britten R.J. Mobile Elements Inserted in the Distant Past have Taken on Important Functions. Gene. 1997;205:177–182. doi: 10.1016/s0378-1119(97)00399-5. [DOI] [PubMed] [Google Scholar]
  • 42.Brosius J. RNAs from all Categories Generate Retrosequences that may be Exapted as Novel Genes or Regulatory Elements. Gene. 1999;238:115–134. doi: 10.1016/s0378-1119(99)00227-9. [DOI] [PubMed] [Google Scholar]
  • 43.Nekrutenko A., Li W.-H. Transposable Elements are Found in a Large Number of Human Protein Coding Regions. Trends in Genetics. 2001;17:619–625. doi: 10.1016/s0168-9525(01)02445-3. [DOI] [PubMed] [Google Scholar]
  • 44.Kazazian H.H. L1 Retrotransposons Shape the Mammalian Genome. Science. 2000;289:1152–1153. doi: 10.1126/science.289.5482.1152. [DOI] [PubMed] [Google Scholar]
  • 45.Moran J.V., DeBerardinis R.J., Kazazian H.H., Jr Exon Shuffling by L1 Retrotransposition. Science. 1999;283:1530–1534. doi: 10.1126/science.283.5407.1530. [DOI] [PubMed] [Google Scholar]
  • 46.Brosius J. Many G-Protein-Coupled Receptors are Encoded by Retrogenes. Trends in Genetics. 1999;15:304–305. doi: 10.1016/s0168-9525(99)01783-7. [DOI] [PubMed] [Google Scholar]
  • 47.McKenzie G.J., Harris R.S., Lee P.L., Rosenberg S.M. The SOS Response Regulates Adaptive Mutation. Proc. Natl. Acad. Sci. USA. 2000;97:6646–6651. doi: 10.1073/pnas.120161797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.O'Neill R.J., O'Neill M.J., Graves J.A. Undermethylation Associated with Retroelement Activation and Chromosome Remodelling in an Interspecific Mammalian Hybrid. Nature. 1998;393:68–72. doi: 10.1038/29985. [DOI] [PubMed] [Google Scholar]
  • 49.http://www.wisc.edu/genestest/CATG/engels/Pelements/Pt.html#Abstract
  • 50.Spradling A.C., Stern D., Kiss I., Roote J., Laverty T., Rubin G.M. Gene Disruptions Using P Transposable Elements. Proc. Natl. Acad. Sci. USA. 1995;92:10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.http://www.geocities.com/jjmohn/endosymbiosis.htm
  • 52.Woese C.R., Kandler O., Wheelis M.L. Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA. 1990;87:4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.De Vries H. The Mutation Theory. Chicago: Open Court; 1910. [Google Scholar]
  • 54.Golubovsky, M.D.: personal communication.
  • 55.Katsenelinboigen A. Evolutionary Change: Toward a Systemic Theory of Development and Maldevelopment. Amsterdam: Gordon and Breach; 1997. [Google Scholar]
  • 56.McClintock B. Significance of Responses of the Genome to Challenge. Science. 1984;226:792–801. doi: 10.1126/science.15739260. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES