Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2002 Jun;28(2):163–172. doi: 10.1023/A:1019990522433

Infrared Study of Carbon Monoxide Migration among Internal Cavities of Myoglobin Mutant L29W

GU Nienhaus 1,2, K Nienhaus 1
PMCID: PMC3456666  PMID: 23345766

Abstract

Myoglobin, a small globular heme protein that binds gaseous ligands such asO2, CO and NO reversibly at the heme iron, provides an excellent modelsystem for studying structural and dynamic aspects of protein reactions. Flashphotolysis experiments, performed over wide ranges in time and temperature, reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. Our recent studies of carbonmonoxy-myoglobin (MbCO) mutant L29W, using time-resolved infrared spectroscopy in combination with x-ray crystallography, have correlated kinetic intermediates with photoproduct structures that are characterized by the CO residing in different internal protein cavities, so-called xenon holes. Here we have used Fourier transform infrared temperature derivative spectroscopy (FTIR-TDS) to further examine the role of internal cavities in the dynamics. Different cavities can be accessed by the CO ligands at different temperatures, and characteristic infrared absorption spectra have been obtained for the different locations of the CO ligand within the protein, enabling us to monitor ligand migration through the protein as well as conformational changes of the protein.

Keywords: FTIR spectroscopy, ligand binding, myoglobin, temperature derivative spectroscopy

Full Text

The Full Text of this article is available as a PDF (189.5 KB).

References

  • 1.Antonini, E. and Brunori, M.: Hemoglobin and Myoglobin in their Reactions with Ligands, North-Holland, Amsterdam, 1971.
  • 2.Dickerson R.E., Geis I. Hemoglobin: Structure, Function, Evolution, and Pathology. Menlo Park, CA: Benjamin/Cummings; 1983. [Google Scholar]
  • 3.Stryer L. Biochemistry. Fourth edition. San Francisco: Freeman Publications; 1995. [Google Scholar]
  • 4.Austin R.H., Beeson K.W., Eisenstein L., Frauenfelder H., Gunsalus I.C. Dynamics of Ligand Binding to Myoglobin. Biochemistry. 1975;14:5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  • 5.Elber R., Karplus M. Enhanced Sampling in Molecular Dynamics: Use of the Timedependent Hartree Approximation for a Simulation of Carbon Monoxide Diffusion through Myoglobin. J. Am. Chem. Soc. 1990;112:9161–9175. [Google Scholar]
  • 6.Scott E.E., Gibson Q.H. Ligand Migration in Sperm Whale Myoglobin. Biochemistry. 1997;36:11909–11917. doi: 10.1021/bi970719s. [DOI] [PubMed] [Google Scholar]
  • 7.Tilton R.F., Kuntz I.D., Petsko G.A. Cavities in Proteins: Structure of a Metmyoglobinxenon Complex Solved to 1.9 Å Resolution. Biochemistry. 1984;23:2849–2857. doi: 10.1021/bi00308a002. [DOI] [PubMed] [Google Scholar]
  • 8.Schlichting I., Berendzen J., Phillips G.N., Sweet R.M. Crystal Structure of Photolysed Carbonmonoxy-myoglobin. Nature. 1994;371:808–812. doi: 10.1038/371808a0. [DOI] [PubMed] [Google Scholar]
  • 9.Teng T., Srajer V., Moffat K. Photolysis-Induced Structural Changes in Single Crystals of Carbonmonoxy Myoglobin at 40 K. Nature Struct. Biol. 1994;1:701–705. doi: 10.1038/nsb1094-701. [DOI] [PubMed] [Google Scholar]
  • 10.Hartmann H., Zinser S., Komninos P., Schneider R.T., Nienhaus G.U., Parak F. X-ray Structure Determination of a Metastable State of Carbonmonoxy Myoglobin after Photodissociation. Proc. Natl. Acad. Sci. USA. 1996;93:7013–7016. doi: 10.1073/pnas.93.14.7013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Brunori M., Vallone B., Cutruzzolà F., Travaglini-Allocatelli C., Berendzen J., Chu K., Sweet R.M., Schlichting I. The Role of Cavities in Protein Dynamics: Crystal Structure of a Photolytic Intermediate of a Mutant Myoglobin. Proc. Natl. Acad. Sci. USA. 2000;97:2058–2063. doi: 10.1073/pnas.040459697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ostermann A., Waschipky R., Parak F.G., Nienhaus G.U. Ligand Binding and Conformational Motions in Myoglobin. Nature. 2000;404:205–208. doi: 10.1038/35004622. [DOI] [PubMed] [Google Scholar]
  • 13.Chu K., Vojtchovsky J., McMahon B.H., Sweet R.M., Berendzen J., Schlichting I. Structure of a Ligand-Binding Intermediate in Wild-Type Carbonmonoxy Myoglobin. Nature. 2000;403:921–923. doi: 10.1038/35002641. [DOI] [PubMed] [Google Scholar]
  • 14.Hirota S., Li T., Phillips G.N., Olson J.S., Mukai M., Kitagawa T. Perturbation of the Fe-O2 Bond by Nearby Residues in Heme Pocket: Observation of vFe—O2 Raman Bands for Oxymyoglobin Mutants. J. Am. Chem. Soc. 1996;118:7845–7846. [Google Scholar]
  • 15.Šrajer V., Teng T., Ursby T., Pradervand C., Ren Z., Adachi S., Schildkamp W., Bourgeois D., Wulff M., Moffat K. Photolysis of the Carbon Monoxide Complex of Myoglobin: Nanosecond Time-Resolved Crystallography. Science. 1996;274:1726–1729. doi: 10.1126/science.274.5293.1726. [DOI] [PubMed] [Google Scholar]
  • 16.Springer B.A., Egeberg K.D., Sligar S.G., Rows R.J., Mathews A.J., Olson J.S. Discrimination Between Oxygen and Carbon Monoxide and Inhibition of Autooxidation by Myoglobin. Site-Directed Mutagenesis of the Distal Histidine. J. Biol. Chem. 1989;264:3057–3060. [PubMed] [Google Scholar]
  • 17.Oldfield E., Guo K., Augspurger J.D., Dykstra C.E. A Molecular Model for the Major Conformational Substates in Heme Proteins. J. Am. Chem. Soc. 1991;113:7537–7541. [Google Scholar]
  • 18.Kushkuley B., Stavrov S.S. Theoretical Study of the Distal-Side Steric and Electrostatic Effects on the Vibrational Characteristics of the FeCO Unit of the Carbonylheme Proteins and Their Models. Biophys. J. 1996;70:1214–1229. doi: 10.1016/S0006-3495(96)79680-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Braunstein D.P., Chu K., Egeberg K.D., Frauenfelder H., Mourant J.R., Nienhaus G.U., Ormos P., Sligar S.G., Springer B.A., Young R.D. Ligand Binding to Heme Proteins: III. FTIR studies of His-E7 and Val-E11 Mutants of Carbonmonoxymyoglobin. Biophys. J. 1993;65:2447–2454. doi: 10.1016/S0006-3495(93)81310-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Li T., Quillin M.L., Phillips G.N., Olson J.S. Structural Determinants of the Stretching Frequency of CO Bound to Myoglobin. Biochemistry. 1994;33:1433–1446. doi: 10.1021/bi00172a021. [DOI] [PubMed] [Google Scholar]
  • 21.Phillips G.N., Teodoro M.L., Li T., Smith B., Olson J.S. Bound CO is aMolecular Probe of Electrostatic Potential in the Distal Pocket of Myoglobin. J. Phys. Chem. B. 1999;103:8817–8829. [Google Scholar]
  • 22.Frauenfelder H., Sligar S.G., Wolynes P.G. The Energy Landscapes and Motions of Proteins. Science. 1991;254:1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  • 23.Nienhaus G.U., Heinzl J., Huenges E., Parak F. Protein Crystal Dynamics Studied by Time-Resolved Analysis of X-ray Diffuse Scattering. Nature. 1989;338:665–666. [Google Scholar]
  • 24.Kneller G.R., Smith J.C. Liquid-Like Side-Chain Dynamics in myoglobin. J. Mol. Biol. 1994;242:181–185. doi: 10.1006/jmbi.1994.1570. [DOI] [PubMed] [Google Scholar]
  • 25.Berendzen J., Braunstein D. Temperature-Derivative Spectroscopy: A Tool for Protein Dynamics. Proc. Natl. Acad. Sci. USA. 1990;87:1–5. doi: 10.1073/pnas.87.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Mourant J.R., Braunstein D.P., Chu K., Frauenfelder H., Nienhaus G.U., Ormos P., Young R.D. Ligand Binding to Heme proteins: II. Transitions in the Heme Pocket of Myoglobin. Biophys. J. 1993;65:1496–1507. doi: 10.1016/S0006-3495(93)81218-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Nienhaus G.U., Mourant J.R., Chu K., Frauenfelder H. Ligand Binding to Heme Proteins. The Effect of Light on Ligand Binding in Myoglobin. Biochemistry. 1994;33:13413–13430. doi: 10.1021/bi00249a030. [DOI] [PubMed] [Google Scholar]
  • 28.Nienhaus, K., Lamb, D.C., Deng, P. and Nienhaus, G.U.: The Effect of Ligand Dynamics on Heme Electronic Transitions in Myoglobin, Biophys. J. (2001), submitted. [DOI] [PMC free article] [PubMed]
  • 29.Lamb, D.C., Nienhaus, K., Arcovito, A., Draghi, F., Miele, A.E., Brunori, M. and Nienhaus, G.U.: Structural Dynamics of Myoglobin: Ligand Migration among Protein Cavities Studied by FTIR-TDS Spectroscopy, J. Mol. Biol. (2001), submitted. [DOI] [PubMed]
  • 30.Alben J.O., Beece D., Bowne S.F., Doster W., Eisenstein L., Frauenfelder H., Good D., McDonald J.D., Marden M.C., Moh P.P., Reinisch L., Reynolds A.H., Shyamsunder E., Yue K.T. Infrared Spectroscopy of Photodissociated Carboxymyoglobin at Low Temperatures. Proc. Natl. Acad. Sci. USA. 1982;79:3744–3748. doi: 10.1073/pnas.79.12.3744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Johnson J.B., Lamb D.C., Frauenfelder H., Muller J.D., McMahon B.H., Nienhaus G.U., Young R.D. Ligand Binding to Heme Proteins. VI. Interconversion of Taxonomic Substates in Carbonmonoxy Myoglobin. Biophys. J. 1996;71:1563–1573. doi: 10.1016/S0006-3495(96)79359-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES