Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(2):369–373. doi: 10.1073/pnas.79.2.369

Covalent adducts of DNA and the nonprotein chromophore of neocarzinostatin contain a modified deoxyribose.

L F Povirk, I H Goldberg
PMCID: PMC345736  PMID: 6210907

Abstract

When the nonprotein chromophore of neocarzinostatin was allowed to react with either calf thymus DNA or poly(dA-dT) . poly(dA-dT) in the presence of 2-mercaptoethanol and the DNA was precipitated with ethanol, 5% of the fluorescence attributable to the naphthalene rings of the chromophore coprecipitated with the DNA. Most of this fluorescence remained attached to DNA through successive reprecipitations, suggesting formation of covalent adducts between chromophore and DNA. Enzymatically digested poly(dA-dT) . poly(dA-dT)-chromophore adduct contained, in addition to deoxyadenosine and thymidine, several highly fluorescent hydrophobic products, separable by reverse-phase chromatography, all of which contained both adenine and thymine radiolabel, as well as chromophore radiolabel. One such product consistently had twice as much thymine as adenine, suggesting a structure chromophore-d(TpApT), in which the attached chromophore rendered both phosphodiester bonds refractory to endonuclease S1. This adduct fragment was completely hydrolyzed at pH 12, releasing adenine, 3'-dTMP, and 5'-dTMP. At pH 7, the adduct fragment slowly released chromophore and 3'-dTMP with parallel kinetics, leaving a modified d(ApT), which was cleaved by snake venom phosphodiesterase to yield 5'-dTMP and a modified deoxyadenosine. These hydrolysis patterns are unlike those of any previously characterized base or phosphotriester DNA adduct but rather indicate an altered deoxyadenosine sugar. The formation of adducts containing a modified deoxyribose suggests that deoxyribose may be the site of covalent chromophore attachment. Alteration of this same site, possibly the 5'-carbon of the sugar moiety, may account for the extreme lability of the phosphodiester bond.

Full text

PDF
373

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers-Schönberg G., Dewey R. S., Hensens O. D., Liesch J. M., Napier M. A., Goldberg I. H. Neocarzinostatin: chemical characterization and partial structure of the non-protein chromophore. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1351–1356. doi: 10.1016/0006-291x(80)91622-8. [DOI] [PubMed] [Google Scholar]
  2. Burger R. M., Peisach J., Horwitz S. B. Effect of light and oxygen on neocarzinostatin stability and DNA-cleaving activity. J Biol Chem. 1978 Jul 25;253(14):4830–4832. [PubMed] [Google Scholar]
  3. Dizdaroglu M., von Sonntag C., Schulte-Frohlinde D. Letter: Strand breaks and sugar release by gamma-irradiation of DNA in aqueous solution. J Am Chem Soc. 1975 Apr 16;97(8):2277–2278. doi: 10.1021/ja00841a051. [DOI] [PubMed] [Google Scholar]
  4. Edo K., Iseki S., Ishida N., Horie T., Kusano G., Nozoe S. An electron spin resonance study of a spin adduct of the non-protein component (NPC) of neocarzinostatin. J Antibiot (Tokyo) 1980 Dec;33(12):1586–1589. doi: 10.7164/antibiotics.33.1586. [DOI] [PubMed] [Google Scholar]
  5. Hatayama T., Goldberg I. H. Deoxyribonucleic acid sugar damage in the action of neocarzinostatin. Biochemistry. 1980 Dec 9;19(25):5890–5898. doi: 10.1021/bi00566a035. [DOI] [PubMed] [Google Scholar]
  6. ISHIDA N., MIYAZAKI K., KUMAGAI K., RIKIMARU M. NEOCARZINOSTATIN, AN ANTITUMOR ANTIBIOTIC OF HIGH MOLECULAR WEIGHT. ISOLATION, PHYSIOCHEMICAL PROPERTIES AND BIOLOGICAL ACTIVITIES. J Antibiot (Tokyo) 1965 Mar;18:68–76. [PubMed] [Google Scholar]
  7. Jennette K. W., Jeffrey A. M., Blobstein S. H., Beland F. A., Harvey R. G., Weinstein I. B. Nucleoside adducts from the in vitro reaction of benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide or benzo[a]pyrene 4,5-oxide with nucleic acids. Biochemistry. 1977 Mar 8;16(5):932–938. doi: 10.1021/bi00624a019. [DOI] [PubMed] [Google Scholar]
  8. Kappen L. S., Goldberg I. H. Activation and inactivation of neocarzinostatin-induced cleavage of DNA. Nucleic Acids Res. 1978 Aug;5(8):2959–2967. doi: 10.1093/nar/5.8.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kappen L. S., Goldberg I. H., Samy T. S. Contrasts in the actions of protein antibiotics on deoxyribonucleic acid structure and function. Biochemistry. 1979 Nov 13;18(23):5123–5127. doi: 10.1021/bi00590a015. [DOI] [PubMed] [Google Scholar]
  10. Kappen L. S., Napier M. A., Goldberg I. H. Roles of chromophore and apo-protein in neocarzinostatin action. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1970–1974. doi: 10.1073/pnas.77.4.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marshall L. E., Graham D. R., Reich K. A., Sigman D. S. Cleavage of deoxyribonucleic acid by the 1,10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity. Biochemistry. 1981 Jan 20;20(2):244–250. doi: 10.1021/bi00505a003. [DOI] [PubMed] [Google Scholar]
  13. Napier M. A., Goldberg I. H., Hensens O. D., Dewey R. S., Liesch J. M., Albers-Schönberg G. Neocarzinostatin chromophore: presence of a cyclic carbonate subunit and its modification in the structure of other biologically active forms. Biochem Biophys Res Commun. 1981 Jun;100(4):1703–1712. doi: 10.1016/0006-291x(81)90715-4. [DOI] [PubMed] [Google Scholar]
  14. Povirk L. F., Dattagupta N., Warf B. C., Goldberg I. H. Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation. Biochemistry. 1981 Jul 7;20(14):4007–4014. doi: 10.1021/bi00517a009. [DOI] [PubMed] [Google Scholar]
  15. Povirk L. F., Goldberg I. H. Binding of the nonprotein chromophore of neocarzinostatin to deoxyribonucleic acid. Biochemistry. 1980 Oct 14;19(21):4773–4780. doi: 10.1021/bi00562a009. [DOI] [PubMed] [Google Scholar]
  16. Povirk L. F., Köhnlein W., Hutchinson F. Specificity of DNA base release by bleomycin. Biochim Biophys Acta. 1978 Nov 21;521(1):126–133. doi: 10.1016/0005-2787(78)90255-1. [DOI] [PubMed] [Google Scholar]
  17. Scribner J. D., Koponen G. Binding of the carcinogen 2-acetamidophenanthrene to rat liver nucleic acids: lack of correlation with carcinogenic activity, and failure of the hydroxamic acid ester model for in vivo activation. Chem Biol Interact. 1979 Dec;28(2-3):201–209. doi: 10.1016/0009-2797(79)90161-3. [DOI] [PubMed] [Google Scholar]
  18. Sheridan R. P., Gupta R. K. Electron spin resonance detection of free radicals in the mercaptan-activation and UV-inactivation of neocarzinostatin. Biochem Biophys Res Commun. 1981 Mar 16;99(1):213–220. doi: 10.1016/0006-291x(81)91734-4. [DOI] [PubMed] [Google Scholar]
  19. Singer B. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog Nucleic Acid Res Mol Biol. 1975;15(0):219–284. [PubMed] [Google Scholar]
  20. Tatsumi K., Nishioka H. Effect of DNA Repair systems on antibacterial and mutagenic activity of an antitumor protein, neocarzinostatin. Mutat Res. 1977 Apr;48(2):195–203. doi: 10.1016/0027-5107(77)90161-0. [DOI] [PubMed] [Google Scholar]
  21. Von Sonntag C., Schulte-Frohlinde D. Radiation-induced degradation of the sugar in model compounds and in DNA. Mol Biol Biochem Biophys. 1978;27:204–226. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES