Abstract
Snake venom phosphodiesterase or endonuclease S1 digestion of neocarzinostatin chromophore-treated DNA, labeled in its thymidine residues, liberates an unusual labeled nucleoside from the 5′ end of a drug-induced break. This substance, isolated by reverse-phase HPLC, possesses carbons from both the thymine and the deoxyribose moieties of thymidine in the DNA but, unlike thymidine, is readily degraded at pH 12 to thymine and a sugar fragment. The altered nucleoside was shown to contain a carbonyl group by its reduction with NaBH4 to form a substance that has the chromatographic properties of thymidine and by its reaction with various hydrazines to form the respective hydrazone derivatives; the carbonyl exists as the 5′ aldehyde as shown by its mild chemical oxidation to the carboxylic acid with simultaneous loss of the 5′ 3H. Mass spectral analysis showed a fragmentation pattern compatible with the structure thymidine-5′-aldehyde. These data indicate that the nonprotein chromophore of neocarzinostatin, in the presence of a reducing substance (2-mercaptoethanol) and molecular oxygen, selectively oxidizes the 5′ carbon of nucleosides in DNA to the aldehyde, resulting in a strand break and a DNA fragment bearing nucleoside-5′-aldehyde at its 5′ end.
Keywords: nucleoside oxidation, alkali lability, nuclease digestion, base release
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albers-Schönberg G., Dewey R. S., Hensens O. D., Liesch J. M., Napier M. A., Goldberg I. H. Neocarzinostatin: chemical characterization and partial structure of the non-protein chromophore. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1351–1356. doi: 10.1016/0006-291x(80)91622-8. [DOI] [PubMed] [Google Scholar]
- D'Andrea A. D., Haseltine W. A. Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3608–3612. doi: 10.1073/pnas.75.8.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edo K., Iseki S., Ishida N., Horie T., Kusano G., Nozoe S. An electron spin resonance study of a spin adduct of the non-protein component (NPC) of neocarzinostatin. J Antibiot (Tokyo) 1980 Dec;33(12):1586–1589. doi: 10.7164/antibiotics.33.1586. [DOI] [PubMed] [Google Scholar]
- HOGENKAMP H. P., LADD J. N., BARKER H. A. The identification of a nucleoside derived from coenzyme B12. J Biol Chem. 1962 Jun;237:1950–1952. [PubMed] [Google Scholar]
- Hatayama T., Goldberg I. H. Deoxyribonucleic acid sugar damage in the action of neocarzinostatin. Biochemistry. 1980 Dec 9;19(25):5890–5898. doi: 10.1021/bi00566a035. [DOI] [PubMed] [Google Scholar]
- Hatayama T., Goldberg I. H., Takeshita M., Grollman A. P. Nucleotide specificity in DNA scission by neocarzinostatin. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3603–3607. doi: 10.1073/pnas.75.8.3603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishida R., Takahashi T. In vitro release of thymine from DNA by neocarzinostatin. Biochem Biophys Res Commun. 1976 Jan 12;68(1):256–261. doi: 10.1016/0006-291x(76)90037-1. [DOI] [PubMed] [Google Scholar]
- Kappen L. S., Goldberg I. H. Activation and inactivation of neocarzinostatin-induced cleavage of DNA. Nucleic Acids Res. 1978 Aug;5(8):2959–2967. doi: 10.1093/nar/5.8.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kappen L. S., Goldberg I. H. Gaps in DNA induced by neocarzinostatin bear 3'- and 5'-phosphoryl termini. Biochemistry. 1978 Feb 21;17(4):729–734. doi: 10.1021/bi00597a027. [DOI] [PubMed] [Google Scholar]
- Kappen L. S., Goldberg I. H. Mechanism of the effect of organic solvents and other protein denaturants of neocarzinostatin activity. Biochemistry. 1979 Dec 11;18(25):5647–5653. doi: 10.1021/bi00592a020. [DOI] [PubMed] [Google Scholar]
- Kappen L. S., Goldberg I. H. Stabilization of neocarzinostatin nonprotein chromophore activity by interaction with apoprotein and with HeLa cells. Biochemistry. 1980 Oct 14;19(21):4786–4790. doi: 10.1021/bi00562a011. [DOI] [PubMed] [Google Scholar]
- Kappen L. S., Napier M. A., Goldberg I. H. Roles of chromophore and apo-protein in neocarzinostatin action. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1970–1974. doi: 10.1073/pnas.77.4.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meienhofer J., Maeda H., Glaser C. B., Czombos J., Kuromizu K. Primary structure of neocarzinostatin, an antitumor protein. Science. 1972 Nov 24;178(4063):875–876. doi: 10.1126/science.178.4063.875. [DOI] [PubMed] [Google Scholar]
- Napier M. A., Goldberg I. H., Hensens O. D., Dewey R. S., Liesch J. M., Albers-Schönberg G. Neocarzinostatin chromophore: presence of a cyclic carbonate subunit and its modification in the structure of other biologically active forms. Biochem Biophys Res Commun. 1981 Jun;100(4):1703–1712. doi: 10.1016/0006-291x(81)90715-4. [DOI] [PubMed] [Google Scholar]
- Napier M. A., Holmquist B., Strydom D. J., Goldberg I. H. Neocarzinostatin: spectral characterization and separation of a non-protein chromophore. Biochem Biophys Res Commun. 1979 Jul 27;89(2):635–642. doi: 10.1016/0006-291x(79)90677-6. [DOI] [PubMed] [Google Scholar]
- Napier M. A., Kappen L. S., Goldberg I. H. Effect of nonprotein chromophore removal on neocarzinostatin action. Biochemistry. 1980 Apr 29;19(9):1767–1773. doi: 10.1021/bi00550a007. [DOI] [PubMed] [Google Scholar]
- Poon R., Beerman T. A., Goldberg I. H. Characterization of DNA strand breakage in vitro by the antitumor protein neocarzinostatin. Biochemistry. 1977 Feb 8;16(3):486–493. doi: 10.1021/bi00622a023. [DOI] [PubMed] [Google Scholar]
- Povirk L. F., Dattagupta N., Warf B. C., Goldberg I. H. Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation. Biochemistry. 1981 Jul 7;20(14):4007–4014. doi: 10.1021/bi00517a009. [DOI] [PubMed] [Google Scholar]
- Povirk L. F., Goldberg I. H. Binding of the nonprotein chromophore of neocarzinostatin to deoxyribonucleic acid. Biochemistry. 1980 Oct 14;19(21):4773–4780. doi: 10.1021/bi00562a009. [DOI] [PubMed] [Google Scholar]
- Povirk L. F., Goldberg I. H. Covalent adducts of DNA and the nonprotein chromophore of neocarzinostatin contain a modified deoxyribose. Proc Natl Acad Sci U S A. 1982 Jan;79(2):369–373. doi: 10.1073/pnas.79.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheridan R. P., Gupta R. K. Electron spin resonance detection of free radicals in the mercaptan-activation and UV-inactivation of neocarzinostatin. Biochem Biophys Res Commun. 1981 Mar 16;99(1):213–220. doi: 10.1016/0006-291x(81)91734-4. [DOI] [PubMed] [Google Scholar]
- Takeshita M., Kappen L. S., Grollman A. P., Eisenberg M., Goldberg I. H. Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity. Biochemistry. 1981 Dec 22;20(26):7599–7606. doi: 10.1021/bi00529a039. [DOI] [PubMed] [Google Scholar]
