Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Feb;79(4):1064–1068. doi: 10.1073/pnas.79.4.1064

On the enzymic mechanism of oxidative phosphorylation.

D E Green, H Vande Zande
PMCID: PMC345900  PMID: 6280165

Abstract

Oxidative phosphorylation, like substrate-level phosphorylation, involves oxidative conversion of inorganic phosphate to a reactive species followed by interaction of this species with enzyme-bound ADP to form enzyme-bound ATP. The reactive species in a phosphoryl ester in substrate-level phosphorylation and phosphonium ion of orthophosphate in oxidative phosphorylation. The coupled synthesis is mediated by a combination of two classical enzymes in substrate-level phosphorylation and by a set of energy-coupled enzymes in oxidative phosphorylation. The full range of experimental evidence supporting this proposed enzymic mechanism of oxidative phosphorylation is presented as well as the rationalization of phenomena that hitherto have eluded explanation.

Full text

PDF
1064

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge W. N., Street B. W. Oxidative phosphorylation. Biochemical effects and properties of trialkyltins. Biochem J. 1964 May;91(2):287–297. doi: 10.1042/bj0910287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexandre A., Lehninger A. L. Stoichiometry of H+ translocation coupled to electron flow from succinate to cytochrome c in mitochondria. J Biol Chem. 1979 Nov 25;254(22):11555–11560. [PubMed] [Google Scholar]
  3. Alexandre A., Reynafarje B., Lehninger A. L. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5296–5300. doi: 10.1073/pnas.75.11.5296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beyer R. E. Isolation and reactions of a phosphorylated form of phosphoryl transferase from beef heart mitochondria. Arch Biochem Biophys. 1968 Jun;125(3):884–894. doi: 10.1016/0003-9861(68)90527-4. [DOI] [PubMed] [Google Scholar]
  5. Beyer R. E. Reconstitution of oxidative phosphorylation in submitochondrial particles by a soluble protein phosphoryl transferase. Arch Biochem Biophys. 1968 Jan;123(1):41–54. doi: 10.1016/0003-9861(68)90101-x. [DOI] [PubMed] [Google Scholar]
  6. Brandolin G., Doussiere J., Gulik A., Gulik-Krzywicki T., Lauquin G. J., Vignais P. V. Kinetic, binding and ultrastructural properties of the beef heart adenine nucleotide carrier protein after incorporation into phospholipid vesicles. Biochim Biophys Acta. 1980 Oct 3;592(3):592–614. doi: 10.1016/0005-2728(80)90103-6. [DOI] [PubMed] [Google Scholar]
  7. Burstein S. R., Gerwin B., Taylor H., Westley J. Forman catalytic mechanism of ascorbate oxidase. Adv Exp Med Biol. 1976;74:472–488. doi: 10.1007/978-1-4684-3270-1_41. [DOI] [PubMed] [Google Scholar]
  8. COHN M. A study of oxidative phosphorylation with O18-labeled inorganic phosphate. J Biol Chem. 1953 Apr;201(2):735–750. [PubMed] [Google Scholar]
  9. COHN M., DRYSDALE G. R. A study with O18 of adenosine triphosphate formation in oxidative phosphorylation. J Biol Chem. 1955 Oct;216(2):831–846. [PubMed] [Google Scholar]
  10. Casey R. P., Chappell J. B., Azzi A. Limited-turnover studies on proton translocation in reconstituted cytochrome c oxidase-containing vesicles. Biochem J. 1979 Jul 15;182(1):149–156. doi: 10.1042/bj1820149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cattell K. J., Lindop C. R., Knight I. G., Beechey R. B. The identification of the site of action of NN'-dicyclohexylcarbodi-imide as a proteolipid in mitochondrial membranes. Biochem J. 1971 Nov;125(1):169–177. doi: 10.1042/bj1250169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Downie J. A., Garland P. B. Respiration-driven proton translocation by yeast mitochondria with differing efficiencies of oxidative phosphorylation. Biochem J. 1973 Aug;134(4):1045–1049. doi: 10.1042/bj1341045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FOWLER L. R., RICHARDSON S. H., HATEFI Y. A rapid method for the preparation of highly purified cytochrome oxidase. Biochim Biophys Acta. 1962 Oct 8;64:170–173. doi: 10.1016/0006-3002(62)90770-9. [DOI] [PubMed] [Google Scholar]
  14. Frieden E., Hsieh H. S. The biological role of ceruloplasmin and its oxidase activity. Adv Exp Med Biol. 1976;74:505–529. doi: 10.1007/978-1-4684-3270-1_43. [DOI] [PubMed] [Google Scholar]
  15. Fry M., Green D. E. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem. 1981 Feb 25;256(4):1874–1880. [PubMed] [Google Scholar]
  16. Fry M., Green D. E. Energized cation transport by complex III (ubiquinone-cytochrome C reductase). Biochem Biophys Res Commun. 1980 Dec 16;97(3):852–859. doi: 10.1016/0006-291x(80)91455-2. [DOI] [PubMed] [Google Scholar]
  17. Fry M., Green D. E. Energized transport of cations by cytochrome oxidase. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1529–1535. doi: 10.1016/s0006-291x(80)80071-4. [DOI] [PubMed] [Google Scholar]
  18. Green D. E. A critique of the chemosmotic model of energy coupling. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2240–2243. doi: 10.1073/pnas.78.4.2240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Green D. E., Vande Zande H. D. Coupling of ATP pyrophosphorolysis to transport of CA2+ in mitochondria. Biochem Biophys Res Commun. 1981 Mar 31;99(2):523–529. doi: 10.1016/0006-291x(81)91776-9. [DOI] [PubMed] [Google Scholar]
  20. Green D. E., Vande Zande H. D. Protonic and cationic changes during cyclical cation transport driven by electron transfer. Biochem Biophys Res Commun. 1981 Mar 16;99(1):127–133. doi: 10.1016/0006-291x(81)91722-8. [DOI] [PubMed] [Google Scholar]
  21. Green D. E., Vande Zande H. Bound cytochrome C as proton donor and acceptor during enzymic oxidoreduction. Biochem Biophys Res Commun. 1981 Feb 12;98(3):635–641. doi: 10.1016/0006-291x(81)91161-x. [DOI] [PubMed] [Google Scholar]
  22. Green D. E., Vande Zande H. Mechanism of uncoupling by uncouples of oxidative phosphorylation. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1017–1024. doi: 10.1016/0006-291x(81)91925-2. [DOI] [PubMed] [Google Scholar]
  23. Green D. E., Zande H. D. Universal energy principle of biological systems and the unity of bioenergetics. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5344–5347. doi: 10.1073/pnas.78.9.5344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hatefi Y., Hanstein W. G., Davis K. A., You K. S. Structure of the mitochondrial electron transport system. Ann N Y Acad Sci. 1974 Feb 18;227:504–520. doi: 10.1111/j.1749-6632.1974.tb14413.x. [DOI] [PubMed] [Google Scholar]
  25. Hatefi Y., Stempel K. E. Isolation and enzymatic properties of the mitochondrial reduced diphosphopyridine nucleotide dehydrogenase. J Biol Chem. 1969 May 10;244(9):2350–2357. [PubMed] [Google Scholar]
  26. Hinkle P. C. Electron transfer across membranes and energy coupling. Fed Proc. 1973 Sep;32(9):1988–1992. [PubMed] [Google Scholar]
  27. Iyanagi T., Makino N., Mason H. S. Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases. Biochemistry. 1974 Apr 9;13(8):1701–1710. doi: 10.1021/bi00705a023. [DOI] [PubMed] [Google Scholar]
  28. Jeng A. Y., Shamoo A. E. Isolation of a Ca2+ carrier from calf heart inner mitochondrial membrane. J Biol Chem. 1980 Jul 25;255(14):6897–6903. [PubMed] [Google Scholar]
  29. Jeng A. Y., Shamoo A. E. The electrophoretic properties of a Ca2+ carrier isolated from calf heart inner mitochondrial membrane. J Biol Chem. 1980 Jul 25;255(14):6904–6912. [PubMed] [Google Scholar]
  30. Krab K., Wikström M. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles. Biochim Biophys Acta. 1978 Oct 11;504(1):200–214. doi: 10.1016/0005-2728(78)90018-x. [DOI] [PubMed] [Google Scholar]
  31. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  32. Leimgruber R. M., Senior A. E. Removal of "tightly bound" nucleotides from phosphorylating submitochondrial particles. J Biol Chem. 1976 Nov 25;251(22):7110–7113. [PubMed] [Google Scholar]
  33. Leimgruber R. M., Senior A. E. Removal of "tightly bound" nucleotides from soluble mitochondrial adenosine triphosphatase (F1). J Biol Chem. 1976 Nov 25;251(22):7103–7109. [PubMed] [Google Scholar]
  34. Mitchell P., Moyle J. Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria. Nature. 1965 Oct 9;208(5006):147–151. doi: 10.1038/208147a0. [DOI] [PubMed] [Google Scholar]
  35. Nakamura T. Oxidation and reduction of copper ions in catalytic reactions of Rhus laccase. Adv Exp Med Biol. 1976;74:408–423. doi: 10.1007/978-1-4684-3270-1_35. [DOI] [PubMed] [Google Scholar]
  36. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  37. Racker E., Chien T. F., Kandrach A. A cholate-dilution procedure for the reconstitution of the Ca++ pump, 32Pi--ATP exchange, and oxidative phosphorylation. FEBS Lett. 1975 Sep 1;57(1):14–18. doi: 10.1016/0014-5793(75)80141-4. [DOI] [PubMed] [Google Scholar]
  38. Racker E., Kandrach A. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXXIX. Reconstitution of the third segment of oxidative phosphorylation. J Biol Chem. 1973 Aug 25;248(16):5841–5847. [PubMed] [Google Scholar]
  39. Ragan C. I., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 28. The reconstitution of the first site of energy conservation. J Biol Chem. 1973 Apr 10;248(7):2563–2569. [PubMed] [Google Scholar]
  40. Reynafarje B., Brand M. D., Lehninger A. L. Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements. J Biol Chem. 1976 Dec 10;251(23):7442–7451. [PubMed] [Google Scholar]
  41. SANADI D. R., GIBSON D. M., AYENGAR P., JACOB M. Alpha-ketoglutaric dehydrogenase. V. Guanosine diphosphate in coupled phosphorylation. J Biol Chem. 1956 Jan;218(1):505–520. [PubMed] [Google Scholar]
  42. Schuldiner S., Kaback H. R. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry. 1975 Dec 16;14(25):5451–5461. doi: 10.1021/bi00696a011. [DOI] [PubMed] [Google Scholar]
  43. Smith D. J., Boyer P. D. Demonstration of a transitory tight binding of ATP and of committed P(i) and ADP during ATP synthesis by chloroplasts. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4314–4318. doi: 10.1073/pnas.73.12.4314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tyson C. A., Vande Zande H., Green D. E. Phospholipids as ionophores. J Biol Chem. 1976 Mar 10;251(5):1326–1332. [PubMed] [Google Scholar]
  45. Vande Zande H. U., Skopp R., Fry M. Intrinsic coupling in cytochrome oxidase: nature and stoichiometry of the coupling reactions. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1522–1528. doi: 10.1016/s0006-291x(80)80070-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES