Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Mar;79(6):2096–2100. doi: 10.1073/pnas.79.6.2096

Adrenal opioid proteins of 8600 and 12,600 daltons: intermediates in proenkephalin processing.

B N Jones, J E Shively, D L Kilpatrick, A S Stern, R V Lewis, K Kojima, S Udenfriend
PMCID: PMC346130  PMID: 6952256

Abstract

[Met]Enkephalin-containing proteins of 8600 and 12,600 daltons have been isolated from acid extracts of bovine adrenal medulla and purified to homogeneity, and their sequences have been determined by a combination of automated Edman degradation, tryptic mapping, and enzymatic time-course hydrolysis. The 8600-dalton protein contains one copy of the [Met]enkephalin sequence at the COOH terminus and the 12,600-dalton protein contains three copies of [Met]enkephalin, of which two are internal and the third is at the COOH terminus. They possess identical NH2-terminal amino acid sequences, suggesting that the 8600-dalton protein is derived from the 12,600-dalton protein by intracellular proteolytic processing. This is supported by results from tryptic maps of both proteins. Furthermore, chemical analysis of the tryptic peptides obtained from the 12,600-dalton protein indicates that it also contains the amino acid sequence that corresponds to a previously characterized enkephalin-containing polypeptide of 3800 daltons (peptide F) [Jones et al. (1980) Arch. Biochem. Biophys. 204, 392-395]. All three polypeptides appear to be intermediates in posttranslational processing of a still larger polyenkephalin precursor molecule, proenkephalin, and part of a biosynthetic pathway leading to smaller enkephalin-containing polypeptides and free enkephalins.

Full text

PDF
2100

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böhlen P., Stein S., Stone J., Udenfriend S. Automatic Monitoring of primary amines in preparative column effluents with fluorescamine. Anal Biochem. 1975 Aug;67(2):438–445. doi: 10.1016/0003-2697(75)90316-4. [DOI] [PubMed] [Google Scholar]
  2. Clement-Jones V., Corder R., Lowry P. J. Isolation of human met-enkephalin and two groups of putative precursors (2K-pro-met-enkephalin) from an adrenal medullary tumour. Biochem Biophys Res Commun. 1980 Jul 31;95(2):665–673. doi: 10.1016/0006-291x(80)90837-2. [DOI] [PubMed] [Google Scholar]
  3. Gerber L. D., Stein S., Rubinstein M., Wideman J., Udenfriend S. Binding assay for opioid peptides with neuroblastoma x glioma hybrid cells: specificity of the receptor site. Brain Res. 1978 Jul 28;151(1):117–126. doi: 10.1016/0006-8993(78)90954-x. [DOI] [PubMed] [Google Scholar]
  4. Gubler U., Kilpatrick D. L., Seeburg P. H., Gage L. P., Udenfriend S. Detection and partial characterization of proenkephalin mRNA. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5484–5487. doi: 10.1073/pnas.78.9.5484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gubler U., Seeburg P., Hoffman B. J., Gage L. P., Udenfriend S. Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature. 1982 Jan 21;295(5846):206–208. doi: 10.1038/295206a0. [DOI] [PubMed] [Google Scholar]
  6. Hunkapiller M. W., Hood L. E. New protein sequenator with increased sensitivity. Science. 1980 Feb 1;207(4430):523–525. doi: 10.1126/science.7352258. [DOI] [PubMed] [Google Scholar]
  7. Johnson N. D., Hunkapiller M. W., Hood L. E. Analysis of phenylthiohydantoin amino acids by high-performance liquid chromatography on DuPont Zobax cyanopropylsilane columns. Anal Biochem. 1979 Dec;100(2):335–338. doi: 10.1016/0003-2697(79)90237-9. [DOI] [PubMed] [Google Scholar]
  8. Jones B. N., Shively J. E., Kilpatrick D. L., Kojima K., Udenfriend S. Enkephalin biosynthetic pathway: a 5300-dalton adrenal polypeptide that terminates at its COOH end with the sequence [Met]enkephalin-Arg-Gly-Leu-COOH. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1313–1315. doi: 10.1073/pnas.79.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones B. N., Stern A. S., Lewis R. V., Kimura S., Stein S., Udenfriend S., Shively J. E. Structure of two adrenal polypeptides containing multiple enkephalin sequences. Arch Biochem Biophys. 1980 Oct 1;204(1):392–395. doi: 10.1016/0003-9861(80)90048-x. [DOI] [PubMed] [Google Scholar]
  10. Kilpatrick D. L., Jones B. N., Kojima K., Udenfriend S. Identification of the octapeptide [Met]enkephalin -Arg6-Gly7-Leu8 in extracts of bovine adrenal medulla. Biochem Biophys Res Commun. 1981 Nov 30;103(2):698–705. doi: 10.1016/0006-291x(81)90506-4. [DOI] [PubMed] [Google Scholar]
  11. Kilpatrick D. L., Taniguchi T., Jones B. N., Stern A. S., Shively J. E., Hullihan J., Kimura S., Stein S., Udenfriend S. A highly potent 3200-dalton adrenal opioid peptide that contains both a [Met]- and [Leu]enkephalin sequence. Proc Natl Acad Sci U S A. 1981 May;78(5):3265–3268. doi: 10.1073/pnas.78.5.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kimura S., Lewis R. V., Gerber L. D., Brink L., Rubinstein M., Stein S., Udenfriend S. Purification to homogeneity of camel pituitary pro-opiocortin, the common precursor of opioid peptides and corticotropin. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1756–1759. doi: 10.1073/pnas.76.4.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kimura S., Lewis R. V., Stern A. S., Rossier J., Stein S., Udenfriend S. Probable precursors of [Leu]enkephalin and [Met]enkephalin in adrenal medulla: peptides of 3-5 kilodaltons. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1681–1685. doi: 10.1073/pnas.77.3.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lewis R. V., Stern A. S., Kilpatrick D. L., Gerber L. D., Rossier J., Stein S., Udenfriend S. Marked increases in large enkephalin-containing polypeptides in the rat adrenal gland following denervation. J Neurosci. 1981 Jan;1(1):80–82. doi: 10.1523/JNEUROSCI.01-01-00080.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lewis R. V., Stern A. S., Kimura S., Rossier J., Stein S., Udenfriend S. An about 50,000-dalton protein in adrenal medulla: a common precursor of [Met]- and [Leu]enkephalin. Science. 1980 Jun 27;208(4451):1459–1461. doi: 10.1126/science.7384787. [DOI] [PubMed] [Google Scholar]
  16. Lewis R. V., Stern A. S., Kimura S., Stein S., Udenfriend S. Enkephalin biosynthetic pathway: proteins of 8000 and 14,000 daltons in bovine adrenal medulla. Proc Natl Acad Sci U S A. 1980 Aug;77(8):5018–5020. doi: 10.1073/pnas.77.8.5018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lewis R. V., Stern A. S., Rossier J., Stein S., Udenfriend S. Putative enkephalin precursors in bovine adrenal medulla. Biochem Biophys Res Commun. 1979 Aug 13;89(3):822–829. doi: 10.1016/0006-291x(79)91852-7. [DOI] [PubMed] [Google Scholar]
  18. Mizuno K., Minamino N., Kangawa K., Matsuo H. A new endogenous opioid peptide from bovine adrenal medulla: isolation and amino acid sequence of a dodecapeptide (BAM-12P). Biochem Biophys Res Commun. 1980 Aug 29;95(4):1482–1488. doi: 10.1016/s0006-291x(80)80064-7. [DOI] [PubMed] [Google Scholar]
  19. Mizuno K., Minamino N., Kangawa K., Matsuo H. A new family of endogenous "big" Met-enkephalins from bovine adrenal medulla: purification and structure of docosa- (BAM-22P) and eicosapeptide (BAM-20P) with very potent opiate activity. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1283–1290. doi: 10.1016/s0006-291x(80)80005-2. [DOI] [PubMed] [Google Scholar]
  20. Rossier J., Trifaró J. M., Lewis R. V., Lee R. W., Stern A., Kimura S., Stein S., Udenfriend S. Studies with [35S]methionine indicate that the 22,000-dalton [Met]enkephalin-containing protein in chromaffin cells is a precursor of [Met]enkephalin. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6889–6891. doi: 10.1073/pnas.77.11.6889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rubinstein M., Chen-Kiang S., Stein S., Udenfriend S. Characterization of proteins and peptides by high-performance liquid chromatography and fluorescence monitoring of their tryptic digests. Anal Biochem. 1979 May;95(1):117–121. doi: 10.1016/0003-2697(79)90193-3. [DOI] [PubMed] [Google Scholar]
  22. Stein S., Böhlen P., Stone J., Dairman W., Udenfriend S. Amino acid analysis with fluorescamine at the picomole level. Arch Biochem Biophys. 1973 Mar;155(1):202–212. doi: 10.1016/s0003-9861(73)80022-0. [DOI] [PubMed] [Google Scholar]
  23. Steiner D. F., Quinn P. S., Chan S. J., Marsh J., Tager H. S. Processing mechanisms in the biosynthesis of proteins. Ann N Y Acad Sci. 1980;343:1–16. doi: 10.1111/j.1749-6632.1980.tb47238.x. [DOI] [PubMed] [Google Scholar]
  24. Stern A. S., Jones B. N., Shively J. E., Stein S., Undenfriend S. Two adrenal opioid polypeptides: proposed intermediates in the processing of proenkephalin. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1962–1966. doi: 10.1073/pnas.78.3.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stern A. S., Lewis R. V., Kimura S., Rossier J., Stein S., Udenfriend S. Opioid hexapeptides and heptapeptides in adrenal medulla and brain possible implications on the biosynthesis of enkephalins. Arch Biochem Biophys. 1980 Dec;205(2):606–613. doi: 10.1016/0003-9861(80)90144-7. [DOI] [PubMed] [Google Scholar]
  26. Wittmann-Liebold B. Amino acid sequence studies on ten ribosomal proteins of Escherichia coli with an improved sequenator equipped with an automatic conversion device. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1415–1431. doi: 10.1515/bchm2.1973.354.2.1415. [DOI] [PubMed] [Google Scholar]
  27. Zimmerman C. L., Appella E., Pisano J. J. Advances in the analysis of amino acid phenylthiohydantoins by high performance liquid chromatography. Anal Biochem. 1976 Sep;75(1):77–85. doi: 10.1016/0003-2697(76)90057-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES