Abstract
Extensive amino acid sequence homology has been found between nine tryptic peptides of pig heart lipoamide dehydrogenase (NADH:lipoamide oxidoreductase, EC 1.6.4.3] and the sequence of human erythrocyte glutathione reductase [NAD(P)H:glutathione oxidoreductase, EC 1.6.4.2]. The average homology is 40%. Six lipoamide dehydrogenase peptides are homologous with segments of the two parts of the FAD domain of glutathione reductase, one with the NADPH domain, and two with the interface domain. Thus, the homology extends throughout the molecule.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arscott L. D., Thorpe C., Williams C. H., Jr Glutathione reductase from yeast. Differential reactivity of the nascent thiols in two-electron reduced enzyme and properties of a monoalkylated derivative. Biochemistry. 1981 Mar 17;20(6):1513–1520. doi: 10.1021/bi00509a016. [DOI] [PubMed] [Google Scholar]
- Baginsky M. L., Huennekens F. M. Electron transport function of a heat-stable protein and a flavoprotein in the oxidative decarboxylation of glycine by Peptococcus glycinophilus. Biochem Biophys Res Commun. 1966 Jun 13;23(5):600–605. doi: 10.1016/0006-291x(66)90441-4. [DOI] [PubMed] [Google Scholar]
- Brew K., Castellino F. J., Vanaman T. C., Hill R. L. The complete amino acid sequence of bovine alpha-lactalbumin. J Biol Chem. 1970 Sep 10;245(17):4570–4582. [PubMed] [Google Scholar]
- Brew K., Vanaman T. C., Hill R. L. Comparison of the amino acid sequence of bovine alpha-lactalbumin and hens egg white lysozyme. J Biol Chem. 1967 Aug 25;242(16):3747–3749. [PubMed] [Google Scholar]
- Brown J. P., Perham R. N. An amino acid sequence in the active site of lipoamide dehydrogenase from the 2-oxoglutarate dehydrogenase complex of E. coli (Crookes strain). FEBS Lett. 1972 Oct 1;26(1):221–224. doi: 10.1016/0014-5793(72)80577-5. [DOI] [PubMed] [Google Scholar]
- Burleigh B. D., Jr, Williams C. H., Jr The isolation and primary structure of a paptide containing the oxidation-reduction active cystine of Escherichia coli lipoamide dehydrogenase. J Biol Chem. 1972 Apr 10;247(7):2077–2082. [PubMed] [Google Scholar]
- Fahey R. C. Biologically important thiol-disulfide reactions and the role of cyst(e)ine in proteins: an evolutionary perspective. Adv Exp Med Biol. 1977;86A:1–30. doi: 10.1007/978-1-4684-3282-4_1. [DOI] [PubMed] [Google Scholar]
- Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
- Hofsteenge J., Vereijken J. M., Weijer W. J., Beintema J. J., Wierenga R. K., Drenth J. Primary and tertiary structure studies of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Isolation and alignment of the CNBr peptides; interactions of the protein with flavin adenine dinucleotide. Eur J Biochem. 1980 Dec;113(1):141–150. [PubMed] [Google Scholar]
- Jones E. T., Williams C. H., Jr The sequence of amino acid residues around the oxidation-reduction active disulfide in yeast glutathione reductase. J Biol Chem. 1975 May 25;250(10):3779–3784. [PubMed] [Google Scholar]
- Klein S. M., Sagers R. D. Glycine metabolism. 3. A flavin-linked dehydrogenase associated with the glycine cleavage system in Peptococcus glycinophilus. J Biol Chem. 1967 Jan 25;242(2):297–300. [PubMed] [Google Scholar]
- Krauth-Siegel R. L., Blatterspiel R., Saleh M., Schiltz E., Schirmer R. H., Untucht-Grau R. Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Eur J Biochem. 1982 Jan;121(2):259–267. doi: 10.1111/j.1432-1033.1982.tb05780.x. [DOI] [PubMed] [Google Scholar]
- Krohne-Ehrich G., Schirmer R. H., Untucht-Grau R. Glutathione reductase from human erythrocytes. Isolation of the enzyme and sequence analysis of the redox-active peptide. Eur J Biochem. 1977 Oct 17;80(1):65–71. doi: 10.1111/j.1432-1033.1977.tb11856.x. [DOI] [PubMed] [Google Scholar]
- Massey V., Hemmerich P. Active-site probes of flavoproteins. Biochem Soc Trans. 1980 Jun;8(3):246–257. doi: 10.1042/bst0080246. [DOI] [PubMed] [Google Scholar]
- Matthews R. G., Arscott L. D., Williams C. H., Jr Isolation, characterization and partial sequencing of cystine and thiol peptides of pig heart lipoamide dehydrogenase. Biochim Biophys Acta. 1974 Nov 25;370(1):26–38. doi: 10.1016/0005-2744(74)90028-x. [DOI] [PubMed] [Google Scholar]
- Matthews R. G., Ballou D. P., Williams C. H., Jr Reactions of pig heart lipoamide dehydrogenase with pyridine nucleotides. Evidence for an effector role for bound oxidized pyridine nucleotide. J Biol Chem. 1979 Jun 25;254(12):4974–4981. [PubMed] [Google Scholar]
- Schiltz E., Blatterspiel R., Untucht-Grau R. Glutathione reductase from human erythrocytes. Amino-acid sequence of a major fragment that links the FAD, NADP and interface domains. Eur J Biochem. 1979 Dec;102(1):269–278. doi: 10.1111/j.1432-1033.1979.tb06289.x. [DOI] [PubMed] [Google Scholar]
- Schulz G. E., Schirmer R. H., Sachsenheimer W., Pai E. F. The structure of the flavoenzyme glutathione reductase. Nature. 1978 May 11;273(5658):120–124. doi: 10.1038/273120a0. [DOI] [PubMed] [Google Scholar]
- Tarr G. E. Rapid separation of amino acid phenylthiohydantoins by isocratic high-performance liquid chromatography. Anal Biochem. 1981 Feb;111(1):27–32. doi: 10.1016/0003-2697(81)90223-2. [DOI] [PubMed] [Google Scholar]
- Thorpe C., Williams C. H., Jr Differential reactivity of the two active site cysteine residues generated on reduction of pig heart lipoamide dehydrogenase. J Biol Chem. 1976 Jun 25;251(12):3553–3557. [PubMed] [Google Scholar]
- Thorpe C., Williams C. H., Jr Lipoamide dehydrogenase from pig heart. Pyridine nucleotide induced changes in monoalkylated two-electron reduced enzyme. Biochemistry. 1981 Mar 17;20(6):1507–1513. doi: 10.1021/bi00509a015. [DOI] [PubMed] [Google Scholar]
- Untucht-Grau R., Schirmer R. H., Schirmer I., Krauth-Siegel R. L. Glutathione reductase from human erythrocytes: amino-acid sequence of the structurally known FAD-binding domain. Eur J Biochem. 1981 Nov;120(2):407–419. doi: 10.1111/j.1432-1033.1981.tb05718.x. [DOI] [PubMed] [Google Scholar]
- Untucht-Grau R., Schulz G. E., Schirmer R. H. The C-terminal fragment of human glutathione reductase contains the postulated catalytic histidine. FEBS Lett. 1979 Sep 15;105(2):244–248. doi: 10.1016/0014-5793(79)80621-3. [DOI] [PubMed] [Google Scholar]