Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jun;79(11):3403–3407. doi: 10.1073/pnas.79.11.3403

Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22.

D Goldenberg, J King
PMCID: PMC346428  PMID: 6954486

Abstract

Newly synthesized tail spike polypeptide chains mature from trypsin- and NaDodSO4-sensitive unfolded chains to trypsin- and NaDodSO4-resistant native trimers with a t1/2 of 5 min at 30 degrees C. A metastable intermediate in subunit folding and assembly was trapped by chilling and isolated by electrophoresis through nondenaturing gels in the cold. A fraction of the intermediate could be matured into native trimers in vitro by incubating at physiological temperature. Mixing experiments with electrophoretically distinct mutant proteins showed that the precursor that matured in vitro represented three tail spike polypeptide chains already associated with each other but not fully folded. Identification of this intermediate reveals that the processes of polypeptide chain folding and subunit assembly are coupled in this large structural protein.

Full text

PDF
3406

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. L. Intermediates in protein folding reactions and the mechanism of protein folding. Annu Rev Biochem. 1975;44:453–475. doi: 10.1146/annurev.bi.44.070175.002321. [DOI] [PubMed] [Google Scholar]
  2. Berget P. B., Poteete A. R. Structure and functions of the bacteriophage P22 tail protein. J Virol. 1980 Apr;34(1):234–243. doi: 10.1128/jvi.34.1.234-243.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergman L. W., Kuehl W. M. Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J Biol Chem. 1979 Sep 25;254(18):8869–8876. [PubMed] [Google Scholar]
  4. Blum A. D., Smallcombe S. H., Baldwin R. L. Nuclear magnetic resonance evidence for a structural intermediate at an early stage in the refolding of ribonuclease A. J Mol Biol. 1978 Jan 25;118(3):305–316. doi: 10.1016/0022-2836(78)90230-9. [DOI] [PubMed] [Google Scholar]
  5. Botstein D., Waddell C. H., King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. doi: 10.1016/0022-2836(73)90204-0. [DOI] [PubMed] [Google Scholar]
  6. Creighton T. E. Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol. 1978;33(3):231–297. doi: 10.1016/0079-6107(79)90030-0. [DOI] [PubMed] [Google Scholar]
  7. Creighton T. E. Intermediates in the refolding of reduced ribonuclease A. J Mol Biol. 1979 Apr 15;129(3):411–431. doi: 10.1016/0022-2836(79)90504-7. [DOI] [PubMed] [Google Scholar]
  8. Creighton T. E. Kinetic study of protein unfolding and refolding using urea gradient electrophoresis. J Mol Biol. 1980 Feb 15;137(1):61–80. doi: 10.1016/0022-2836(80)90157-6. [DOI] [PubMed] [Google Scholar]
  9. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  10. Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
  11. Fessler J. H., Fessler L. I. Biosynthesis of procollagen. Annu Rev Biochem. 1978;47:129–162. doi: 10.1146/annurev.bi.47.070178.001021. [DOI] [PubMed] [Google Scholar]
  12. Fukuda R., Ishihama A. Subunits of RNA polymerase in function and structure; Maturation in vitro of core enzyme from Escherichia coli. J Mol Biol. 1974 Aug 15;87(3):523–540. doi: 10.1016/0022-2836(74)90102-8. [DOI] [PubMed] [Google Scholar]
  13. Garel J. R., Dautry-Varsat A. Sequential folding of a bifunctional allosteric protein. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3379–3383. doi: 10.1073/pnas.77.6.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garel J. R., Nall B. T., Baldwin R. L. Guanidine-unfolded state of ribonuclease A contains both fast- and slow-refolding species. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1853–1857. doi: 10.1073/pnas.73.6.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldenberg D. P., King J. Temperature-sensitive mutants blocked in the folding or subunit of the bacteriophage P22 tail spike protein. II. Active mutant proteins matured at 30 degrees C. J Mol Biol. 1981 Feb 5;145(4):633–651. doi: 10.1016/0022-2836(81)90307-7. [DOI] [PubMed] [Google Scholar]
  16. Hamlin J., Zabin I. -Galactosidase: immunological activity of ribosome-bound, growing polypeptide chains. Proc Natl Acad Sci U S A. 1972 Feb;69(2):412–416. doi: 10.1073/pnas.69.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hawley S. A., Macleod R. M. Electrophoretic separation of molecular species associated with the thermal transition of chymotrypsinogen A. J Mol Biol. 1976 May 25;103(3):655–657. doi: 10.1016/0022-2836(76)90223-0. [DOI] [PubMed] [Google Scholar]
  18. Israel J. V., Anderson T. F., Levine M. in vitro MORPHOGENESIS OF PHAGE P22 FROM HEADS AND BASE-PLATE PARTS. Proc Natl Acad Sci U S A. 1967 Feb;57(2):284–291. doi: 10.1073/pnas.57.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ito K., Iwakura Y., Ishihama A. Biosynthesis of RNA polymerase in Escherichia coli. III. Identification of intermediates in the assembly of RNA polymerase. J Mol Biol. 1975 Aug 5;96(2):257–271. doi: 10.1016/0022-2836(75)90347-2. [DOI] [PubMed] [Google Scholar]
  20. Iwashita S., Kanegasaki S. Smooth specific phage adsorption: endorhamnosidase activity of tail parts of P22. Biochem Biophys Res Commun. 1973 Nov 16;55(2):403–409. doi: 10.1016/0006-291x(73)91101-7. [DOI] [PubMed] [Google Scholar]
  21. King J., Hall C., Casjens S. Control of the synthesis of phage P22 scaffolding protein is coupled to capsid assembly. Cell. 1978 Oct;15(2):551–560. doi: 10.1016/0092-8674(78)90023-5. [DOI] [PubMed] [Google Scholar]
  22. King J., Laemmli U. K. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):465–477. doi: 10.1016/0022-2836(71)90148-3. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  25. Rudolph R., Heider I., Westhof E., Jaenicke R. Mechanism of refolding and reactivation of lactic dehydrogenase from pig heart after dissociation in various solvent media. Biochemistry. 1977 Jul 26;16(15):3384–3390. doi: 10.1021/bi00634a015. [DOI] [PubMed] [Google Scholar]
  26. Saxena V. P., Wetlaufer D. B. Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry. 1970 Dec 8;9(25):5015–5023. doi: 10.1021/bi00827a028. [DOI] [PubMed] [Google Scholar]
  27. Smith D. H., Berget P. B., King J. Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail-spike protein. I. Fine-structure mapping. Genetics. 1980 Oct;96(2):331–352. doi: 10.1093/genetics/96.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith D. H., King J. Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail spike protein. III. Intensive polypeptide chains synthesized at 39 degrees C. J Mol Biol. 1981 Feb 5;145(4):653–676. doi: 10.1016/0022-2836(81)90308-9. [DOI] [PubMed] [Google Scholar]
  29. Stellwagen E. Proline peptide isomerization and the reactivation of denatured enzymes. J Mol Biol. 1979 Nov 25;135(1):217–229. doi: 10.1016/0022-2836(79)90348-6. [DOI] [PubMed] [Google Scholar]
  30. Wickner W. The assembly of proteins into biological membranes: The membrane trigger hypothesis. Annu Rev Biochem. 1979;48:23–45. doi: 10.1146/annurev.bi.48.070179.000323. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES