Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jun;79(12):3729–3733. doi: 10.1073/pnas.79.12.3729

Cell-free biosynthesis of somatostatin precursors: Evidence for multiple forms of preprosomatostatin.

T G Warren, D Shields
PMCID: PMC346500  PMID: 6124973

Abstract

It has been demonstrated [Shields, D. (1980) J. Biol. Chem. 255, 11625-11628] that mRNA isolated from the islets of Langerhans codes for two preposomatostatin molecules of apparent molecular weights 18,000 and 19,000, respectively. Here evidence is presented that in vitro translation of pancreatic islet mRNA in two different cell-free protein-synthesizing systems directs the synthesis of up to nine distinct forms of somatostatin-immunoreactive polypeptides. The multiplicity of the preprosomatostatin molecules was the result of initiation of translation from separate species of mRNA as demonstrated by amino-terminal labeling with N-formyl-[35S]Met-tRNAMetf. Translation of islet mRNA isolated from different individual animals showed that all of the preposomatostatin polypeptides were present amongst the cell-free products, which implies that the multiple forms were not due to genetic variation in the wild population. Based on their apparent molecular weights and distinctly different isoelectric points, the different preprosomatostatin molecules could be classified into two major families. These results suggest that the anglerfish preprosomatostatins are encoded by separate mRNA species and are consistent with the existence of a multigene family for somatostatin.

Full text

PDF
3733

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brazeau P., Vale W., Burgus R., Ling N., Butcher M., Rivier J., Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973 Jan 5;179(4068):77–79. doi: 10.1126/science.179.4068.77. [DOI] [PubMed] [Google Scholar]
  2. Chin W. W., Habener J. F., Kieffer J. D., Maloof F. Cell-free translation of the messenger RNA coding for the alpha subunit of thyroid-stimulating hormone. J Biol Chem. 1978 Nov 25;253(22):7985–7988. [PubMed] [Google Scholar]
  3. Dubois M. P. Immunoreactive somatostatin is present in discrete cells of the endocrine pancreas. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1340–1343. doi: 10.1073/pnas.72.4.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Early P., Rogers J., Davis M., Calame K., Bond M., Wall R., Hood L. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell. 1980 Jun;20(2):313–319. doi: 10.1016/0092-8674(80)90617-0. [DOI] [PubMed] [Google Scholar]
  5. Goodman R. H., Jacobs J. W., Chin W. W., Lund P. K., Dee P. C., Habener J. F. Nucleotide sequence of a cloned structural gene coding for a precursor of pancreatic somatostatin. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5869–5873. doi: 10.1073/pnas.77.10.5869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodman R. H., Lund P. K., Barnett F. H., Habener J. F. Intestinal pre-prosomatostatin. Identification of mRNA coding for a precursor by cell-free translations and hybridization with a cloned islet cDNA. J Biol Chem. 1981 Feb 25;256(4):1499–1501. [PubMed] [Google Scholar]
  7. Goodman R. H., Lund P. K., Jacobs J. W., Habener J. F. Pre-prosomatostatins. Products of cell-free translations of messenger RNAs from anglerfish islets. J Biol Chem. 1980 Jul 25;255(14):6549–6552. [PubMed] [Google Scholar]
  8. Hobart P., Crawford R., Shen L., Pictet R., Rutter W. J. Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature. 1980 Nov 13;288(5787):137–141. doi: 10.1038/288137a0. [DOI] [PubMed] [Google Scholar]
  9. Housman D., Jacobs-Lorena M., Rajbhandary U. L., Lodish H. F. Initiation of haemoglobin synthesis by methionyl-tRNA. Nature. 1970 Aug 29;227(5261):913–918. doi: 10.1038/227913a0. [DOI] [PubMed] [Google Scholar]
  10. Lauber M., Camier M., Cohen P. Higher molecular weight forms of immunoreactive somatostatin in mouse hypothalamic extracts: evidence of processing in vitro. Proc Natl Acad Sci U S A. 1979 Nov;76(11):6004–6008. doi: 10.1073/pnas.76.11.6004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lomedico P., Rosenthal N., Efstratidadis A., Gilbert W., Kolodner R., Tizard R. The structure and evolution of the two nonallelic rat preproinsulin genes. Cell. 1979 Oct;18(2):545–558. doi: 10.1016/0092-8674(79)90071-0. [DOI] [PubMed] [Google Scholar]
  12. Long E. O., Dawid I. B. Repeated genes in eukaryotes. Annu Rev Biochem. 1980;49:727–764. doi: 10.1146/annurev.bi.49.070180.003455. [DOI] [PubMed] [Google Scholar]
  13. Noe B. D., Fletcher D. J., Spiess J. Evidence for the existence of a biosynthetic precursor for somatostatin. Diabetes. 1979 Aug;28(8):724–730. doi: 10.2337/diab.28.8.724. [DOI] [PubMed] [Google Scholar]
  14. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  15. Patzelt C., Tager H. S., Carroll R. J., Steiner D. F. Identification of prosomatostatin in pancreatic islets. Proc Natl Acad Sci U S A. 1980 May;77(5):2410–2414. doi: 10.1073/pnas.77.5.2410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shields D., Blobel G. Cell-free synthesis of fish preproinsulin, and processing by heterologous mammalian microsomal membranes. Proc Natl Acad Sci U S A. 1977 May;74(5):2059–2063. doi: 10.1073/pnas.74.5.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shields D., Blobel G. Efficient cleavage and segregation of nascent presecretory proteins in a reticulocyte lysate supplemented with microsomal membranes. J Biol Chem. 1978 Jun 10;253(11):3753–3756. [PubMed] [Google Scholar]
  18. Shields D. In vitro biosynthesis of fish islet preprosomatostatin: evidence of processing and segregation of a high molecular weight precursor. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4074–4078. doi: 10.1073/pnas.77.7.4074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shields D. In vitro biosynthesis of somatostatin. Evidence for two distinct preprosomatostatin molecules. J Biol Chem. 1980 Dec 25;255(24):11625–11628. [PubMed] [Google Scholar]
  20. Shields D., Warren T. G., Roth S. E., Brenner M. J. Cell-free synthesis and processing of multiple precursors to glucagon. Nature. 1981 Feb 5;289(5797):511–514. doi: 10.1038/289511a0. [DOI] [PubMed] [Google Scholar]
  21. Spiess J., Villarreal J., Vale W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. Biochemistry. 1981 Mar 31;20(7):1982–1988. doi: 10.1021/bi00510a038. [DOI] [PubMed] [Google Scholar]
  22. Williamson A. R. Extent and control of antibody diversity. Biochem J. 1972 Nov;130(2):325–333. doi: 10.1042/bj1300325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES