Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jul;79(14):4270–4274. doi: 10.1073/pnas.79.14.4270

Purification and characterization of cysteic acid and cysteine sulfinic acid decarboxylase and L-glutamate decarboxylase from bovine brain.

J Y Wu
PMCID: PMC346652  PMID: 6956856

Abstract

L-Cysteic and cysteine sulfinic acids decarboxylase (CADCase/CSADCase) and L-glutamic acid decarboxylase (GADCase), the synthetic enzymes for taurine and gamma-aminobutyric acid, respectively, have been purified to homogeneity from bovine brain. Although CADCase/CSADCase and GADCase copurified through various column procedures, these two enzymes can be clearly separated by a hydroxyapatite column. The purification procedures involve ammonium sulfate fractionation, column chromatographies on Sephadex G-200, hydroxyapatite, DEAE-cellulose, and preparative polyacrylamide gel electrophoresis. The Km values for CADCase/CSADCase are 0.22 and 0.18 mM with L-cysteic and cysteine sulfinic acids as substrates, respectively. CADCase/CSADCase cannot use L-glutamate as substrate. GADCase can use L-glutamate, L-cysteic, and cysteine sulfinic acid as substrates with Km values of 1.6, 5.4, and 5.2 mM, respectively. Antibodies against CADCase/CSADCase do not crossreact with GADCase preparations and vice versa. It is concluded that CADCase/CSADCase and GADCase are two distinct enzyme entities and they are responsible for the biosynthesis of taurine and gamma-aminobutyric acid, respectively.

Full text

PDF
4270

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos W. B. An apparatus for microelectrophoresis in polyacrylamide slab-gels. Anal Biochem. 1976 Feb;70(2):612–615. doi: 10.1016/0003-2697(76)90487-5. [DOI] [PubMed] [Google Scholar]
  2. Bachelard H. S. Biochemistry of central active amino acids. Adv Biochem Psychopharmacol. 1981;29:475–497. [PubMed] [Google Scholar]
  3. Blindermann J. M., Maitre M., Ossola L., Mandel P. Purification and some properties of L-glutamate decarboxylase from human brain. Eur J Biochem. 1978 May;86(1):143–152. doi: 10.1111/j.1432-1033.1978.tb12293.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chan-Palay V., Lin C. T., Palay S., Yamamoto M., Wu J. Y. Taurine in the mammalian cerebellum: demonstration by autoradiography with [3H]taurine and immunocytochemistry with antibodies against the taurine-synthesizing enzyme, cysteine-sulfinic acid decarboxylase. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2695–2699. doi: 10.1073/pnas.79.8.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guion-Rain M-C, Portemer C., Chatagner F. Rat liver cysteine sulfinate decarboxylase: purification, new appraisal of the molecular weight and determination of catalytic properties. Biochim Biophys Acta. 1975 Mar 28;384(1):265–276. doi: 10.1016/0005-2744(75)90115-1. [DOI] [PubMed] [Google Scholar]
  7. HOPE D. B. Pyridoxal phosphate as the coenzyme of the mammalian decarboxylase for L-cysteine sulphinic and L-cysteic acids. Biochem J. 1955 Mar;59(3):497–500. doi: 10.1042/bj0590497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huxtable R. J. Does taurine have a function? Introduction. Fed Proc. 1980 Jul;39(9):2678–2679. [PubMed] [Google Scholar]
  9. Jacobsen J. G., Smith L. H. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev. 1968 Apr;48(2):424–511. doi: 10.1152/physrev.1968.48.2.424. [DOI] [PubMed] [Google Scholar]
  10. Kuriyama K. Taurine as a neuromodulator. Fed Proc. 1980 Jul;39(9):2680–2684. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lin Y. C., DeMeio R. H., Metrione R. M. Purification and properties of rat liver cysteine sulfinate decarboxylase. Biochim Biophys Acta. 1971 Dec 15;250(3):558–567. doi: 10.1016/0005-2744(71)90256-7. [DOI] [PubMed] [Google Scholar]
  13. SORBO B., HEYMAN T. On the purification of cysteinesulfinic acid decarboxylase and its substrate specificity. Biochim Biophys Acta. 1957 Mar;23(3):624–627. doi: 10.1016/0006-3002(57)90385-2. [DOI] [PubMed] [Google Scholar]
  14. Saito K., Wu J. Y., Matsuda T., Roberts E. Immunochemical comparisons of vertebrate glutamic acid decarboxylase. Brain Res. 1974 Jan 11;65(2):277–285. doi: 10.1016/0006-8993(74)90039-0. [DOI] [PubMed] [Google Scholar]
  15. Su Y. Y., Wu J. Y., Lam D. M. Purification of L-glutamic acid decarboxylase from catfish brain. J Neurochem. 1979 Jul;33(1):169–179. doi: 10.1111/j.1471-4159.1979.tb11719.x. [DOI] [PubMed] [Google Scholar]
  16. Wu J. Y., Moss L. G., Chen M. S. Tissue and regional distribution of cysteic acid decarboxylase. A new assay method. Neurochem Res. 1979 Apr;4(2):201–212. doi: 10.1007/BF00964144. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES