Abstract
Embryonic stem cells display the ability to differentiate in vitro into a variety of cell types. This process is induced by embryoid body formation, addition of several soluble growth factors to the culture medium and other strategies. However, none of the used factors is capable to drive differentiation to only one specific celltype. The use of gating technology has allowed to partially overcome this problem. The rational behind this technique is based on the transfection of stem cells with a transgene carrying expression cassettes for a cell type specific promoter, regulating expression ofa selectable marker to select one cell lineage from other cell lineages.Using this system, we have obtained insulin-secreting cells by transfecting mouse embryonic stem cells with a DNA construct providing resistance to neomycin under the control of the regulatory regions of the human insulin gene. Furthermore, gating technology has been successfully used to isolate other cell types such as cardiomyocytes and neural precursors from undifferentiated embryonic stem cells. This review focuses on the possibilities offered by this technology in embryonic stem cell bioengineering, mainly to obtain insulin-secreting cells. Advantages and considerations of this selection system will be also discussed.
Keywords: antibiotic selection, cell therapy, diabetes mellitus, embryonic stem cells, endocrine pancreas, gating technology, pancreatic β-cell
Full Text
The Full Text of this article is available as a PDF (97.7 KB).
References
- Baumann RP, Sherman DH, Sartorelli AC. Novel selection marker for mammalian cell transfection. BioTechniques. 2002;32:1030–1036. doi: 10.2144/02325st03. [DOI] [PubMed] [Google Scholar]
- Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song K, Sharma A, O'Neil JJ. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000;97:7999–8004. doi: 10.1073/pnas.97.14.7999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA. 1997;94:5709–5712. doi: 10.1073/pnas.94.11.5709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Culver KW, Blaese RM. Gene therapy for cancer. Trends in Genetics. 1994;10:174–178. doi: 10.1016/0168-9525(94)90095-7. [DOI] [PubMed] [Google Scholar]
- Edlund H. Developmental biology of the pancreas. Diabetes. 2001;50(Suppl1):S5–S9. doi: 10.2337/diabetes.50.2007.s5. [DOI] [PubMed] [Google Scholar]
- Efrat S. Prospects for gene therapy of insulin-dependent diabetes mellitus. Diabetologia. 1998;41:1401–1409. doi: 10.1007/s001250051085. [DOI] [PubMed] [Google Scholar]
- Efrat S, Fusco-DeMane D, Lemberg H, Emran OA, Wang S. Conditional transformation of a pancreatic β-cell line derived form transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci USA. 1995;92:3576–3580. doi: 10.1073/pnas.92.8.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuhrmann-Benzakein E, García-Gabay I, Pepper MS, Vassalli JD, Herrera PL. Inducible and irreversible control of gene expression using a single transgene. Nucleic Acid Res. 2000;28:E99. doi: 10.1093/nar/28.23.e99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldfine ID, German MD, Tseng HC, Wang J, Bolaffi JL, Chen JW, Olson DC, Rothman SS. The endocrine secretion of human insulin and growth hormone by exocrine glands of the gastrointestinal tract. Nat Biotechnol. 1997;15:1378–1382. doi: 10.1038/nbt1297-1378. [DOI] [PubMed] [Google Scholar]
- Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA. 1992;89:5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gros L, Montoliu R, Riu E, Lebrigand L, Bosch F. Regulated production of mature insulin by non-beta cells. Human Gene Therapy. 1998;8:2249–2259. doi: 10.1089/hum.1997.8.18-2249. [DOI] [PubMed] [Google Scholar]
- Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindsell C, Weinmaster G, Madsen OD, Serup P. Independent development of pancreatic α-and β-cells from neurogenin3-expressing precursors. A role for the Notch pathway in repression of premature differentiation. Diabetes. 2000;49:163–176. doi: 10.2337/diabetes.49.2.163. [DOI] [PubMed] [Google Scholar]
- Keyoung HM, Roy NS, Benraiss A, Louissaint A, Jr, Suzuki A, Hashimoto M, Rashbaum WK, Okano H, Goldman SA. High-yield selection and extraction of two promoter-defined phenotypes of neuronal stem cells from the fetal human brain. Nature Biotechnol. 2001;19:843–850. doi: 10.1038/nbt0901-843. [DOI] [PubMed] [Google Scholar]
- Klug MG, Soonpa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest. 1996;98:216–224. doi: 10.1172/JCI118769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolossov E, Fleischmann BK, Liu Q, et al. Functional characteristics of embryonic stem cell-derived cardiac precursors cells identified by tissue-specific expression of the green fluorescent protein. J Cell Biol. 1998;143:2045–2056. doi: 10.1083/jcb.143.7.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li M, Pevny L, Lovell-Badge R, Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol. 1998;8:971–974. doi: 10.1016/S0960-9822(98)70399-9. [DOI] [PubMed] [Google Scholar]
- Müller M, Fleischmann BK, Selbert S, Ji GJ, Endl E, Middeler G, Müller OJ, Schlenke P, Frese S, Wobus AM, Hescheler J, Katus HA, Franz WM. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J. 2000;14:2540–2548. doi: 10.1096/fj.00-0002com. [DOI] [PubMed] [Google Scholar]
- Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204. doi: 10.1634/stemcells.19-3-193. [DOI] [PubMed] [Google Scholar]
- Pevny LH, Sockanathan S, Placzek M, Lovell-Badge R. A role for Sox1 in neural determination. Development. 1998;125:1967–1978. doi: 10.1242/dev.125.10.1967. [DOI] [PubMed] [Google Scholar]
- Reubinoff BE, Pera MF, Fong C-Y, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol. 2000;18:399–404. doi: 10.1038/74447. [DOI] [PubMed] [Google Scholar]
- Richards M, Fong C-Y, Chan W-K, Wong P-C, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nature Biotechnol. 2002;20:933–936. doi: 10.1038/nbt726. [DOI] [PubMed] [Google Scholar]
- Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2000;97:11307–11312. doi: 10.1073/pnas.97.21.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro AMJ, Lakey JRT, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV. Islet transplantation in seven patients with type 1 diabetes mellitus using a corticoid-free immunosuppressive regime. N Eng J Med. 2000;343:230–238. doi: 10.1056/NEJM200007273430401. [DOI] [PubMed] [Google Scholar]
- Smith AG. Culture and differentiation of embryonic stem cells. J Tissue Culture Methods. 1991;13:89–94. doi: 10.1007/BF01666137. [DOI] [Google Scholar]
- Soria B, Andreu E, Berná G, Fuentes E, Gil A, León-Quinto T, Martín F, Montanya E, Nadal A, Reig JA, Ripoll C, Roche E, Sánchez-Andrés JV, Segura J. Engineering pancreatic islets. Pflügers Arch-Eur J Physiol. 2000;440:1–18. doi: 10.1007/s004240000251. [DOI] [PubMed] [Google Scholar]
- Soria B, Roche E, Berná G, León-Quinto T, Reig JA, Martín F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 2000;49:157–162. doi: 10.2337/diabetes.49.2.157. [DOI] [PubMed] [Google Scholar]
- Soria B. In-vitro differentiation of pancreatic β-cells. Differentiation. 2001;68:205–219. doi: 10.1046/j.1432-0436.2001.680408.x. [DOI] [PubMed] [Google Scholar]
- Soria B, Skoudy A, Martín F. From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. Diabetologia. 2001;44:407–415. doi: 10.1007/s001250051636. [DOI] [PubMed] [Google Scholar]
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. [DOI] [PubMed] [Google Scholar]
- Weiss MJ, Orkin SH. In vitro differentiation of murine embryonic stem cells. New approaches to old problems. J Clin Invest. 1996;97:591–595. doi: 10.1172/JCI118454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnol. 2001;19:971–974. doi: 10.1038/nbt1001-971. [DOI] [PubMed] [Google Scholar]
