Abstract
An antiserum to monoamine oxidase B (MAO-B) was used to define the distribution of this metabolic enzyme in the adult rat brain immunocytochemically. MAO-B is specifically located in two major central nervous system cell classes, astrocytes and serotonin-containing neurons. Double-immunofluorescence experiments using antisera to glial fibrillary acidic protein and MAO-B showed that both protoplasmic and fibrillary astrocytes throughout the brain contain MAO-B, whereas oligodendrocytes do not contain the enzyme. Areas lacking a blood-brain barrier, such as the specialized circumventricular organs, also contain MAO-B-positive cells. A double-immunofluorescence experiment using antisera to serotonin and MAO-B enabled the positive identification of neurons containing both molecules. The catecholamine-containing neurons of the brain did not contain detectable amounts of MAO-B. The specific distribution of MAO-B in the adult central nervous system indicates that the role of MAO-B in monoamine metabolism may be more specifically defined than previously believed.
Full text
PDF![6385](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f1/347126/9e9f42d5a349/pnas00459-0279.png)
![6386](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f1/347126/251f6317cd9f/pnas00459-0280.png)
![6387](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f1/347126/d7e08afdfdda/pnas00459-0281.png)
![6388](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f1/347126/95fa3446948b/pnas00459-0282.png)
![6389](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f1/347126/cea299603a3a/pnas00459-0283.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ball E. H., Singer S. J. Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci U S A. 1982 Jan;79(1):123–126. doi: 10.1073/pnas.79.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berod A., Hartman B. K., Pujol J. F. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem. 1981 Jul;29(7):844–850. doi: 10.1177/29.7.6167611. [DOI] [PubMed] [Google Scholar]
- Brown G. K., Powell J. F., Craig I. W. Molecular weight differences between human platelet and placental monoamine oxidase. Biochem Pharmacol. 1980 Oct 1;29(19):2595–2603. doi: 10.1016/0006-2952(80)90073-8. [DOI] [PubMed] [Google Scholar]
- Campbell I. C., Robinson D. S., Lovenberg W., Murphy D. L. The effects of chronic regimens of clorgyline and pargyline on monoamine metabolism in the rat brain. J Neurochem. 1979 Jan;32(1):49–55. doi: 10.1111/j.1471-4159.1979.tb04508.x. [DOI] [PubMed] [Google Scholar]
- Cawthon R. M., Pintar J. E., Haseltine F. P., Breakefield X. O. Differences in the structure of A and B forms of human monoamine oxidase. J Neurochem. 1981 Aug;37(2):363–372. doi: 10.1111/j.1471-4159.1981.tb00464.x. [DOI] [PubMed] [Google Scholar]
- Demarest K. T., Smith D. J., Azzaro A. J. The presence of the type A form of monoamine oxidase within nigrostriatal dopamine-containing neurons. J Pharmacol Exp Ther. 1980 Nov;215(2):461–468. [PubMed] [Google Scholar]
- Eng L. F., Rubinstein L. J. Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem. 1978 Jul;26(7):513–522. doi: 10.1177/26.7.357640. [DOI] [PubMed] [Google Scholar]
- Frankfurt M., Lauder J. M., Azmitia E. C. The immunocytochemical localization of serotonergic neurons in the rat hypothalamus. Neurosci Lett. 1981 Jul 17;24(3):227–232. doi: 10.1016/0304-3940(81)90161-0. [DOI] [PubMed] [Google Scholar]
- Fuller R. W., Hemrick-Luecke S. K. Elevation of epinephrine concentration in rat brain by LY51641, a selective inhibitor of type A monoamine oxidase. Res Commun Chem Pathol Pharmacol. 1981 May;32(2):207–221. [PubMed] [Google Scholar]
- Ghandour M. S., Langley O. K., Labourdette G., Vincendon G., Gombos G. Specific and artefactual cellular localizations of S 100 protein: an astrocyte marker in rat cerebellum. Dev Neurosci. 1981;4(1):66–78. doi: 10.1159/000112742. [DOI] [PubMed] [Google Scholar]
- Hatten M. E., Liem R. K. Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro. J Cell Biol. 1981 Sep;90(3):622–630. doi: 10.1083/jcb.90.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson L. V., Walsh M. L., Bockus B. J., Chen L. B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol. 1981 Mar;88(3):526–535. doi: 10.1083/jcb.88.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan G. P., Hartman B. K., Creveling C. R. Immunohistochemical demonstration of catechol-o-methyltransferase in mammalian brain. Brain Res. 1979 May 11;167(2):241–250. doi: 10.1016/0006-8993(79)90819-9. [DOI] [PubMed] [Google Scholar]
- Kaplan G. P., Hartman B. K., Creveling C. R. Immunohistochemical localization of catechol-O-methyltransferase in circumventricular organs of the rat: potential variations in the blood-brain barrier to native catechols. Brain Res. 1981 Dec 21;229(2):323–335. doi: 10.1016/0006-8993(81)90997-5. [DOI] [PubMed] [Google Scholar]
- Levitt P., Cooper M. L., Rakic P. Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci. 1981 Jan;1(1):27–39. doi: 10.1523/JNEUROSCI.01-01-00027.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt P., Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol. 1980 Oct 1;193(3):815–840. doi: 10.1002/cne.901930316. [DOI] [PubMed] [Google Scholar]
- Meltzer H. Y., Arora R. C. Distribution of type A and type B monoamine oxidase activities in rat and chicken skeletal muscle and nerves. Biochem Pharmacol. 1979 Nov 15;28(22):3261–3264. doi: 10.1016/0006-2952(79)90119-9. [DOI] [PubMed] [Google Scholar]
- Murphy D. L. Substrate-selective monoamine oxidases--inhibitor, tissue, species and functional differences. Biochem Pharmacol. 1978;27(15):1889–1893. doi: 10.1016/0006-2952(78)90001-1. [DOI] [PubMed] [Google Scholar]
- Pintar J. E., Breakefield X. O. Monoamine oxidase (MAO) activity as a determinant in human neurophysiology. Behav Genet. 1982 Feb;12(1):53–68. doi: 10.1007/BF01065740. [DOI] [PubMed] [Google Scholar]
- Salach J. I., Weyler W. Iron content and spectral properties of highly purified bovine liver monoamine oxidase. Arch Biochem Biophys. 1981 Nov;212(1):147–153. doi: 10.1016/0003-9861(81)90353-2. [DOI] [PubMed] [Google Scholar]
- Schoepp D. D., Azzaro A. J. Alteration of dopamine synthesis in rat striatum subsequent to selective type A monoamine oxidase inhibition. J Neurochem. 1981 Aug;37(2):527–530. doi: 10.1111/j.1471-4159.1981.tb00490.x. [DOI] [PubMed] [Google Scholar]
- Steinbusch H. W., Verhofstad A. A., Joosten H. W. Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience. 1978;3(9):811–819. doi: 10.1016/0306-4522(78)90033-7. [DOI] [PubMed] [Google Scholar]