Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Nov;79(21):6656–6660. doi: 10.1073/pnas.79.21.6656

Primary structure of the immunoglobulin J chain from the mouse.

G M Cann, A Zaritsky, M E Koshland
PMCID: PMC347187  PMID: 6815655

Abstract

The primary structure of the murine J chain was investigated by sequence analysis of the J chain cDNA inserts from two independently cloned chimeric plasmids. The sequence data showed that (i) the two cDNA inserts accounted for all but approximately 100 5' nucleotides of the J chain mRNA and (ii) the J chain mRNA encodes a prepeptide of at least 23 amino acids, a mature protein of 137 residues, and an untranslated 3' region of 707 nucleotides exclusive of the 3' poly(A) tract. The amino acid sequence deduced for the mature mouse J chain was found to be 74% identical with that previously determined for the human J chain. By analyzing the conserved features of the sequence, a two-domain structure was generated for the J chain which correlates well with its functions in the polymerization of IgM and IgA. Moreover, by comparing the homologies of the J and heavy chains in mouse and man, evidence was obtained that the structures involved in polymerization are the most conserved elements of immunoglobulin molecules.

Full text

PDF
6659

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Bothwell A. L., Knapp M., Siden E., Mather E., Koshland M., Baltimore D. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3' ends. Cell. 1980 Jun;20(2):293–301. doi: 10.1016/0092-8674(80)90615-7. [DOI] [PubMed] [Google Scholar]
  2. Beale D., Feinstein A. Structure and function of the constant regions of immunoglobulins. Q Rev Biophys. 1976 May;9(2):135–180. doi: 10.1017/s0033583500002390. [DOI] [PubMed] [Google Scholar]
  3. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  4. Blattner F. R., Williams B. G., Blechl A. E., Denniston-Thompson K., Faber H. E., Furlong L., Grunwald D. J., Kiefer D. O., Moore D. D., Schumm J. W. Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science. 1977 Apr 8;196(4286):161–169. doi: 10.1126/science.847462. [DOI] [PubMed] [Google Scholar]
  5. Chapuis R. M., Koshland M. E. Mechanism of IgM polymerization. Proc Natl Acad Sci U S A. 1974 Mar;71(3):657–661. doi: 10.1073/pnas.71.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  7. Clewell D. B., Helinski D. R. Effect of growth conditions on the formation of the relaxation complex of supercoiled ColE1 deoxyribonucleic acid and protein in Escherichia coli. J Bacteriol. 1972 Jun;110(3):1135–1146. doi: 10.1128/jb.110.3.1135-1146.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Early P., Rogers J., Davis M., Calame K., Bond M., Wall R., Hood L. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell. 1980 Jun;20(2):313–319. doi: 10.1016/0092-8674(80)90617-0. [DOI] [PubMed] [Google Scholar]
  9. Edelman G. M., Cunningham B. A., Gall W. E., Gottlieb P. D., Rutishauser U., Waxdal M. J. The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A. 1969 May;63(1):78–85. doi: 10.1073/pnas.63.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eskeland T., Brandtzaeg P. Does J chain mediate the combination of 19S IgM and dimeric IgA with the secretory component rather than being necessary for their polymerization? Immunochemistry. 1974 Mar;11(3):161–163. doi: 10.1016/0019-2791(74)90214-6. [DOI] [PubMed] [Google Scholar]
  11. Fougereau M., Bourgois A., de Preval C., Rocca-Serra J., Schiff C. The complete sequence of the murine monoclonal immunoglobulin MOPC 173 (IgG2a): genetic implications. Ann Immunol (Paris) 1976 Sep-Oct;127(5):607–631. [PubMed] [Google Scholar]
  12. Garcia-Pardo A., Lamm M. E., Plaut A. G., Frangione B. J chain is covalently bound to both monomer subunits in human secretory IgA. J Biol Chem. 1981 Nov 25;256(22):11734–11738. [PubMed] [Google Scholar]
  13. Hagenbüchle O., Bovey R., Young R. A. Tissue-specific expression of mouse-alpha-amylase genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland. Cell. 1980 Aug;21(1):179–187. doi: 10.1016/0092-8674(80)90125-7. [DOI] [PubMed] [Google Scholar]
  14. Halpern M. S., Koshland M. E. The stoichiometry of J chain in human secretory IgA. J Immunol. 1973 Dec;111(6):1653–1660. [PubMed] [Google Scholar]
  15. Hobart P., Crawford R., Shen L., Pictet R., Rutter W. J. Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature. 1980 Nov 13;288(5787):137–141. doi: 10.1038/288137a0. [DOI] [PubMed] [Google Scholar]
  16. Inman F. P., Mestecky J. The J chain of polymeric immunoglobulins. Contemp Top Mol Immunol. 1974;3:111–141. doi: 10.1007/978-1-4684-2838-4_5. [DOI] [PubMed] [Google Scholar]
  17. Kehry M., Sibley C., Fuhrman J., Schilling J., Hood L. E. Amino acid sequence of a mouse immunoglobulin mu chain. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2932–2936. doi: 10.1073/pnas.76.6.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koshland M. E., Chapuis R. M., Recht B., Brown J. C. Selective proteolysis of the J chain component in human polymeric immunoglobulin. J Immunol. 1977 Mar;118(3):775–781. [PubMed] [Google Scholar]
  19. Koshland M. E. Structure and function of the J chain. Adv Immunol. 1975;20:41–69. doi: 10.1016/s0065-2776(08)60206-0. [DOI] [PubMed] [Google Scholar]
  20. MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Thomas G., Rutter W. J. Structure of a family of rat amylase genes. Nature. 1980 Sep 11;287(5778):117–122. doi: 10.1038/287117a0. [DOI] [PubMed] [Google Scholar]
  21. Mather E. L., Alt F. W., Bothwell A. L., Baltimore D., Koshland M. E. Expression of J chain RNA in cell lines representing different stages of B lymphocyte differentiation. Cell. 1981 Feb;23(2):369–378. doi: 10.1016/0092-8674(81)90132-x. [DOI] [PubMed] [Google Scholar]
  22. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mendez E., Prelli F., Frangione B., Franklin E. C. Characterization of a disulfide bridge linking the J chain to the alpha chain of polymeric immunoglobulin A. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1291–1297. doi: 10.1016/s0006-291x(73)80034-8. [DOI] [PubMed] [Google Scholar]
  24. Mole J. E., Bhown A. S., Bennett J. C. Primary structure of human J chain: alignment of peptides from chemical and enzymatic hydrolyses. Biochemistry. 1977 Aug 9;16(16):3507–3513. doi: 10.1021/bi00635a002. [DOI] [PubMed] [Google Scholar]
  25. Morrison S. L., Koshland M. E. Characterization of the J chain from polymeric immunoglobulins (IgA-IgM-immunological specificity-primary structure). Proc Natl Acad Sci U S A. 1972 Jan;69(1):124–128. doi: 10.1073/pnas.69.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raschke W. C., Mather E. L., Koshland M. E. Assembly and secretion of pentameric IgM in a fusion between a nonsecreting B cell lymphoma and an IgG-secreting plasmacytoma. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3469–3473. doi: 10.1073/pnas.76.7.3469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  28. Robinson E. A., Appella E. Complete amino acid sequence of a mouse immunoglobulin alpha chain (MOPC 511). Proc Natl Acad Sci U S A. 1980 Aug;77(8):4909–4913. doi: 10.1073/pnas.77.8.4909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scheller R. H., Thomas T. L., Lee A. S., Klein W. H., Niles W. D., Britten R. J., Davidson E. H. Clones of individual repetitive sequences from sea urchin DNA constructed with synthetic Eco RI sites. Science. 1977 Apr 8;196(4286):197–200. doi: 10.1126/science.847467. [DOI] [PubMed] [Google Scholar]
  30. Smith D. R., Calvo J. M. Nucleotide sequence of the E coli gene coding for dihydrofolate reductase. Nucleic Acids Res. 1980 May 24;8(10):2255–2274. doi: 10.1093/nar/8.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Uhlin B. E., Nordström K. A runaway-replication mutant of plasmid R1drd-19: temperature-dependent loss of copy number control. Mol Gen Genet. 1978 Oct 4;165(2):167–179. doi: 10.1007/BF00269904. [DOI] [PubMed] [Google Scholar]
  32. Wickens M. P., Buell G. N., Schimke R. T. Synthesis of double-stranded DNA complementary to lysozyme, ovomucoid, and ovalbumin mRNAs. Optimization for full length second strand synthesis by Escherichia coli DNA polymerase I. J Biol Chem. 1978 Apr 10;253(7):2483–2495. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES