Abstract
Data demonstrating the direct phosphorylation of tyrosine hydroxylase [tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] purified from rat pheochromocytoma by ATP, Mg2+ and cyclic AMP-dependent protein kinase catalytic subunit are presented. The incorporation of phosphate is highly correlated with the activation of the hydroxylase when either the time of preincubation or the amount of protein kinase subunit is varied. The rate of phosphorylation of tyrosine hydroylase compares favorably with that of H1 histone, a known substrate of protein kinase. Lineweaver-Burk analysis of crude or purified rat pheochromocytoma tyrosine hydroxylase activity, as a function of pterin cofactor concentration, in the absence of ATP, Mg2+, and protein kinase catalytic subunit, yields a curvilinear relationship which can be resolved into two lines, suggesting two enzyme forms with different affinities for pterin cofactor. A fraction of the hydroxylase present in the tumor exists in the activated state, presumably due to the presence of ATP and endogenous protein kinase activity. When the solubl enzyme is activated by cyclic AMP, ATP, Mg2+, and protein kinase, virtually all of the enzyme is converted to the low Km state. We conclude that tyrosine hydroxylase is a substrate of cyclic AMP-dependent protein kinase in vitro and, presumably, in vivo.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chalfie M., Perlman R. L. Studies of a transplantable rat pheochromocytoma: biochemical characterization and catecholamine secretion. J Pharmacol Exp Ther. 1976 Jun;197(3):615–622. [PubMed] [Google Scholar]
- Cohen P., Watson D. C., Dixon G. H. The hormonal control of activity of skeletal muscle phosphorylase kinase. Amino-acid sequences at the two sites of action of adenosine-3':5'-monophosphate-dependent protein kinase. Eur J Biochem. 1975 Feb 3;51(1):79–92. doi: 10.1111/j.1432-1033.1975.tb03909.x. [DOI] [PubMed] [Google Scholar]
- Drummond G. S., Symchowicz E., Goldstein M., Shenkman L. Activation of rat pheochromocytoma tyrosine hydroxylase by a cyclic AMP-dependent protein kinase in a cell-free system. J Neural Transm. 1978;42(2):139–144. doi: 10.1007/BF01675352. [DOI] [PubMed] [Google Scholar]
- Edelman A. M., Raese J. D., Lazar M. A., Barchas J. D. In vitro phosphorylation of a purified preparation of bovine corpus striatal tyrosine hydroxylase. Commun Psychopharmacol. 1978;2(6):461–465. [PubMed] [Google Scholar]
- Hoeldtke R., Kaufman S. Bovine adrenal tyrosine hydroxylase: purification and properties. J Biol Chem. 1977 May 25;252(10):3160–3169. [PubMed] [Google Scholar]
- Joh T. H., Park D. H., Reis D. J. Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4744–4748. doi: 10.1073/pnas.75.10.4744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemp B. E., Bylund D. B., Huang T. S., Krebs E. G. Substrate specificity of the cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3448–3452. doi: 10.1073/pnas.72.9.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuczenski R. T., Mandell A. J. Allosteric activation of hypothalamic tyrosine hydroxylase by ions and sulphated mucopolysaccharides. J Neurochem. 1972 Jan;19(1):131–137. doi: 10.1111/j.1471-4159.1972.tb01262.x. [DOI] [PubMed] [Google Scholar]
- LEVITT M., SPECTOR S., SJOERDSMA A., UDENFRIEND S. ELUCIDATION OF THE RATE-LIMITING STEP IN NOREPINEPHRINE BIOSYNTHESIS IN THE PERFUSED GUINEA-PIG HEART. J Pharmacol Exp Ther. 1965 Apr;148:1–8. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Letendre C. H., MacDonnell P. C., Guroff G. The biosynthesis of phosphorylated tyrosine hydroxylase by organ cultures of rat medulla and superior cervical ganglia. Biochem Biophys Res Commun. 1977 Feb 7;74(3):891–897. doi: 10.1016/0006-291x(77)91602-3. [DOI] [PubMed] [Google Scholar]
- Lloyd T., Kaufman S. Evidence for the lack of direct phosphorylation of bovine caudate tyrosine hydroxylase following activation by exposure to enzymatic phosphorylating conditions. Biochem Biophys Res Commun. 1975 Oct 6;66(3):907–917. doi: 10.1016/0006-291x(75)90726-3. [DOI] [PubMed] [Google Scholar]
- Lovenberg W., Bruckwick E. A., Hanbauer I. ATP, cyclic AMP, and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactor. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2955–2958. doi: 10.1073/pnas.72.8.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masserano J. M., Weiner N. The rapid activation of adrenal tyrosine hydroxylase by decapitation and its relationship to a cyclic AMP-dependent phosphorylating mechanism. Mol Pharmacol. 1979 Sep;16(2):513–528. [PubMed] [Google Scholar]
- Milstien S., Abita J. P., Chang N., Kaufman S. Hepatic phenylalanine 4-monooxygenase is a phosphoprotein. Proc Natl Acad Sci U S A. 1976 May;73(5):1591–1593. doi: 10.1073/pnas.73.5.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgenroth V. H., 3rd, Hegstrand L. R., Roth R. H., Greengard P. Evidence for involvement of protein kinase in the activation by adenosine 3':5'-monophosphate of brain tyrosine 3-monooxygenase. J Biol Chem. 1975 Mar 10;250(5):1946–1948. [PubMed] [Google Scholar]
- Rosen O. M., Erlichman J. Reversible autophosphorylation of a cyclic 3':5'-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1975 Oct 10;250(19):7788–7794. [PubMed] [Google Scholar]
- Sugden P. H., Holladay L. A., Reimann E. M., Corbin J. D. Purification and characterization of the catalytic subunit of adenosine 3':5'-cyclic monophosphate-dependent protein kinase from bovine liver. Biochem J. 1976 Nov;159(2):409–422. doi: 10.1042/bj1590409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren S., Chute R. N. Pheochromocytoma. Cancer. 1972 Feb;29(2):327–331. doi: 10.1002/1097-0142(197202)29:2<327::aid-cncr2820290210>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- Waymire J. C., Bjur R., Weiner N. Assay of tyrosine hydroxylase by coupled decarboxylation of DOPA formed from 1- 14 C-L-tyrosine. Anal Biochem. 1971 Oct;43(2):588–600. doi: 10.1016/0003-2697(71)90291-0. [DOI] [PubMed] [Google Scholar]
- Weiner N., Lee F. L., Dreyer E., Barnes E. The activation of tyrosine hydroxylase in noradrenergic neurons during acute nerve stimulation. Life Sci. 1978 Apr 3;22(13-15):1197–1215. doi: 10.1016/0024-3205(78)90088-7. [DOI] [PubMed] [Google Scholar]
- Yamauchi T., Fujisawa H. In vitro phosphorylation of bovine adrenal tyrosine hydroxylase by adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1979 Jan 25;254(2):503–507. [PubMed] [Google Scholar]
- Zanella J., Jr, Rall T. W. Evaluation of electrical pulses and elevated levels of potassium ions as stimulants of adenosine 3', 5'-monophosphate (cyclic AMP) accumulation in guinea-pig brain. J Pharmacol Exp Ther. 1973 Aug;186(2):241–252. [PubMed] [Google Scholar]