Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Feb;77(2):1005–1009. doi: 10.1073/pnas.77.2.1005

Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

G G Rousseau, A Amar-Costesec, M Verhaegen, D K Granner
PMCID: PMC348412  PMID: 6102383

Abstract

In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells.

Full text

PDF
1009

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amar-Costesec A., Beaufay H. The association of NAD glycohydrolase with the plasma membrane in rat liver [proceedings]. Arch Int Physiol Biochim. 1977 Dec;85(5):949–950. [PubMed] [Google Scholar]
  2. Amar-Costesec A., Wibo M., Thinès-Sempoux D., Beaufay H., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. IV. Biochemical, physical, and morphological modifications of microsomal components induced by digitonin, EDTA, and pyrophosphate. J Cell Biol. 1974 Sep;62(3):717–745. doi: 10.1083/jcb.62.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballard P. L., Tomkins G. M. Glucocorticoid-induced alteration of the surface membrane of cultured hepatoma cells. J Cell Biol. 1970 Oct;47(1):222–234. doi: 10.1083/jcb.47.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrett A. J. An improved color reagent for use in Barrett's assay of Cathepsin B. Anal Biochem. 1976 Nov;76(50):374–376. doi: 10.1016/0003-2697(76)90298-0. [DOI] [PubMed] [Google Scholar]
  5. Baxter J. D. Glucocorticoid hormone action. Pharmacol Ther B. 1976;2(3):605–669. doi: 10.1016/0306-039x(76)90010-6. [DOI] [PubMed] [Google Scholar]
  6. Baxter J. D., Tomkins G. M. The relationship between glucocorticoid binding and tyrosine aminotransferase induction in hepatoma tissue culture cells. Proc Natl Acad Sci U S A. 1970 Mar;65(3):709–715. doi: 10.1073/pnas.65.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bazzell K. L., Price G., Tu S., Griffin M. Cortisol modification of HeLa 65 alkaline phosphatase. Decreased phosphate content of the induced enzyme. Eur J Biochem. 1976 Jan 15;61(2):493–499. doi: 10.1111/j.1432-1033.1976.tb10044.x. [DOI] [PubMed] [Google Scholar]
  8. Beaufay H., Amar-Costesec A., Feytmans E., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol. 1974 Apr;61(1):188–200. doi: 10.1083/jcb.61.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berlin C. M., Schimke R. T. Influence of turnover rates on the responses of enzymes to cortisone. Mol Pharmacol. 1965 Sep;1(2):149–156. [PubMed] [Google Scholar]
  10. Bischoff E., Tran-Thi T. A., Decker K. F. Nucleotide pyrophosphatase of rat liver. A comparative study on the enzymes solubilized and purified from plasma membrane and endoplasmic reticulum. Eur J Biochem. 1975 Feb 21;51(2):353–361. doi: 10.1111/j.1432-1033.1975.tb03935.x. [DOI] [PubMed] [Google Scholar]
  11. Doyle D., Baumann H., England B., Friedman E., Hou E., Tweto J. Biogenesis of plasma membrane glycoproteins in hepatoma tissue culture cells. J Biol Chem. 1978 Feb 10;253(3):965–973. [PubMed] [Google Scholar]
  12. Evans W. H. Nucleotide pyrophosphatase, a sialoglycoprotein located on the hepatocyte surface. Nature. 1974 Aug 2;250(465):391–394. doi: 10.1038/250391a0. [DOI] [PubMed] [Google Scholar]
  13. FAIN J. N. EFFECTS OF DEXAMETHASONE AND 2-DEOXY-D-GLUCOSE ON FRUCTOSE AND GLUCTOSE METABOLISM BY INCUBATED ADIPOSE TISSUE. J Biol Chem. 1964 Apr;239:958–962. [PubMed] [Google Scholar]
  14. Fredin B. L., Seifert S. C., Gelehrter T. D. Dexamethasone-induced adhesion in hepatoma cells: the role of plasminogen activator. Nature. 1979 Jan 25;277(5694):312–313. doi: 10.1038/277312a0. [DOI] [PubMed] [Google Scholar]
  15. Granner D. K., Hayashi S., Thompson E. B., Tomkins G. M. Stimulation of tyrosine aminotransferase synthesis by dexamethasone phosphate in cell culture. J Mol Biol. 1968 Jul 28;35(2):291–301. doi: 10.1016/s0022-2836(68)80025-7. [DOI] [PubMed] [Google Scholar]
  16. Gray J. G., Pratt W. B., Aronow L. Effect of glucocorticoids on hexose uptake by mouse fibroblasts in vitro. Biochemistry. 1971 Jan 19;10(2):277–284. [PubMed] [Google Scholar]
  17. Ivarie R. D., O'Farrell P. H. The glucocorticoid domain: steroid-mediated changes in the rate of synthesis of rat hepatoma proteins. Cell. 1978 Jan;13(1):41–55. doi: 10.1016/0092-8674(78)90136-8. [DOI] [PubMed] [Google Scholar]
  18. Kelley D. S., Becker J. E., Potter V. R. Effect of insulin, dexamethasone, and glucagon on the amino acid transport ability of four rat hepatoma cell lines and rat hepatocytes in culture. Cancer Res. 1978 Dec;38(12):4591–4600. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lopez-Saura P., Trouet A., Tulkens P. Analytical fractionation of cultured hepatoma cells (HTC cells). Biochim Biophys Acta. 1978 Nov 1;543(4):430–449. doi: 10.1016/0304-4165(78)90298-2. [DOI] [PubMed] [Google Scholar]
  21. MORITA Y., MUNCK A. EFFECT OF GLUCOCORTICOIDS IN VIVO AND IN VITRO ON NET GLUCOSE UPTAKE AND AMINO ACID INCORPORATION BY RAT-THYMUS CELLS. Biochim Biophys Acta. 1964 Oct 9;93:150–157. doi: 10.1016/0304-4165(64)90269-7. [DOI] [PubMed] [Google Scholar]
  22. Risser W. L., Gelehrter T. D. Hormonal modulation of amino acid transport in rat hepatoma cells in tissue culture. J Biol Chem. 1973 Feb 25;248(4):1248–1254. [PubMed] [Google Scholar]
  23. Rousseau G. G. Interaction of steroids with hepatoma cells: molecular mechanisms of glucocorticoid hormone action. J Steroid Biochem. 1975 Jan;6(1):75–89. doi: 10.1016/0022-4731(75)90032-1. [DOI] [PubMed] [Google Scholar]
  24. Seifert S. C., Gelehrter T. D. Mechanism of dexamethasone inhibition of plasminogen activator in rat hepatoma cells. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6130–6133. doi: 10.1073/pnas.75.12.6130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thompson E. B., Aviv D., Lippman M. E. Variants of HTC cells with low tyrosine aminotransferinase inducibility and apparently normal glucorticoid receptors. Endocrinology. 1977 Feb;100(2):406–419. doi: 10.1210/endo-100-2-406. [DOI] [PubMed] [Google Scholar]
  26. Touster O., Aronson N. N., Jr, Dulaney J. T., Hendrickson H. Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. J Cell Biol. 1970 Dec;47(3):604–618. doi: 10.1083/jcb.47.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES