Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Mar;77(3):1506–1510. doi: 10.1073/pnas.77.3.1506

A general method, employing arsenazo III in liposomes, for study of calcium ionophores: results with A23187 and prostaglandins.

G Weissmann, P Anderson, C Serhan, E Samuelsson, E Goodman
PMCID: PMC348524  PMID: 6769114

Abstract

Multilamellar (MLV) and large unilamellar (LUV) lipid vesicles (liposomes) trap the metallochromic dye arsenazo III [2,7-bis(arsonophenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid ] in their aqueous compartments. When ionophore A23187 was preincorporated into either MLV or LUV above 0.001 mol%, addition of Ca to the outside of liposomes produced spectral shifts characteristic of the Ca . AIII2 complex. The method permitted detection of two molecules of A23187 per liposome. Liposomes with A23187 were permselective: divalent cations were translocated in the order Mn greater than Ca greater than Sr greater than Mg congruent to Ba. Because prostaglandins (PGs) may act as Ca ionophores, we have incorporated into MLVs and LUVs stable prostaglandins (PGE2, PGI2, PGB1), endoperoxide analogs, and a water-soluble, polymeric derivative of PGB1:PGBx. None acted as ionophore. In contrast, when added to the outside of preformed MLV or LUV, PGBx, at concentrations above 1 micro M, provoked permselective uptake of Ca equivalent to that induced by 10 nM A23187. These studies demonstrate not only that liposomes containing arsenazo III may be employed in a sensitive asssay for agents that translocate divalent cations, but that a water-soluble derivative of a naturally occurring fatty acid, PGBx, is a potent ionophore.

Full text

PDF
1509

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carsten M. E., Miller J. D. Comparison of calcium association constants and ionophoretic properties of some prostaglandins and ionophores. Arch Biochem Biophys. 1978 Jan 15;185(1):282–283. doi: 10.1016/0003-9861(78)90168-6. [DOI] [PubMed] [Google Scholar]
  2. Carsten M. E., Miller J. D. Effects of prostaglandins and oxytocin on calcium release from a uterine microsomal fraction. J Biol Chem. 1977 Mar 10;252(5):1576–1581. [PubMed] [Google Scholar]
  3. Corey E. J., Nicolaou K. C., Machida Y., Malmsten C. L., Samuelsson B. Synthesis and biological properties of a 9,11-azo-prostanoid: highly active biochemical mimic of prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3355–3358. doi: 10.1073/pnas.72.9.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gerrard J. M., Butler A. M., Graff G., Stoddard S. F., White J. G. Prostaglandin endoperoxides promote calcium release from a platelet membrane fraction in vitro. Prostaglandins Med. 1978 Nov;1(5):373–385. doi: 10.1016/0161-4630(78)90124-6. [DOI] [PubMed] [Google Scholar]
  5. Gorman R. R., Fitzpatrick F. A., Miller O. V. Reciprocal regulation of human platelet cAMP levels by thromboxane A2 and prostacyclin. Adv Cyclic Nucleotide Res. 1978;9:597–609. [PubMed] [Google Scholar]
  6. Gorman R. R. Modulation of human platelet function by prostacyclin and thromboxane A2. Fed Proc. 1979 Jan;38(1):83–88. [PubMed] [Google Scholar]
  7. Johnson S. M. The effect of charge and cholesterol on the size and thickness of sonicated phospholipid vesicles. Biochim Biophys Acta. 1973 Apr 25;307(1):27–41. doi: 10.1016/0005-2736(73)90022-9. [DOI] [PubMed] [Google Scholar]
  8. Kendrick N. C. Purification of arsenazo III, a Ca2+-sensitive dye. Anal Biochem. 1976 Dec;76(2):487–501. doi: 10.1016/0003-2697(76)90342-0. [DOI] [PubMed] [Google Scholar]
  9. Kendrick N. C., Ratzlaff R. W., Blaustein M. P. Arsenazo III as an indicator for ionized calcium in physiological salt solutions: its use for determination of the CaATP dissociation constant. Anal Biochem. 1977 Dec;83(2):433–450. doi: 10.1016/0003-2697(77)90052-5. [DOI] [PubMed] [Google Scholar]
  10. Malmström K., Carafoli E. Effects of prostaglandins on the interaction of Ca2+ with mitochondria. Arch Biochem Biophys. 1975 Dec;171(2):418–423. doi: 10.1016/0003-9861(75)90050-8. [DOI] [PubMed] [Google Scholar]
  11. Ohnishi S. T., Devlin T. M. Calcium ionophore activity of a prostaglandin B1 derivative (PGBx). Biochem Biophys Res Commun. 1979 Jul 12;89(1):240–245. doi: 10.1016/0006-291x(79)90969-0. [DOI] [PubMed] [Google Scholar]
  12. Pfeiffer D. R., Lardy H. A. Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187. Biochemistry. 1976 Mar 9;15(5):935–943. doi: 10.1021/bi00650a001. [DOI] [PubMed] [Google Scholar]
  13. Polis B. D., Polis E., Kwong S. Protection and reactivation of oxidative phosphorylation in mitochondria by a stable free-radical prostaglandin polymer (PGBx). Proc Natl Acad Sci U S A. 1979 Apr;76(4):1598–1602. doi: 10.1073/pnas.76.4.1598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reilly T., Thomas V. Estimated daily energy expenditures of professional association footballers. Ergonomics. 1979 May;22(5):541–548. doi: 10.1080/00140137908924638. [DOI] [PubMed] [Google Scholar]
  15. Salzman E. W. Interrelation of prostaglandin endoperoxide (prostaglandin G2) and cyclic 3',5'-adenosine monophosphate in human blood platelets. Biochim Biophys Acta. 1977 Aug 25;499(1):48–60. doi: 10.1016/0304-4165(77)90227-6. [DOI] [PubMed] [Google Scholar]
  16. Salzman E. W., Levine L. Cyclic 3',5'-adenosine monophosphate in human blood platelets. II. Effect of N6-2'-o-dibutyryl cyclic 3',5'-adenosine monophosphate on platelet function. J Clin Invest. 1971 Jan;50(1):131–141. doi: 10.1172/JCI106467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schieren H., Rudolph S., Finkelstein M., Coleman P., Weissmann G. Comparison of large unilamellar vesicles prepared by a petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses. Biochim Biophys Acta. 1978 Aug 3;542(1):137–153. doi: 10.1016/0304-4165(78)90240-4. [DOI] [PubMed] [Google Scholar]
  18. Weissmann G., Bloomgarden D., Kaplan R., Cohen C., Hoffstein S., Collins T., Gotlieb A., Nagle D. A general method for the introduction of enzymes, by means of immunoglobulin-coated liposomes, into lysosomes of deficient cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):88–92. doi: 10.1073/pnas.72.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weissmann G., Collins T., Evers A., Dunham P. Membrane perturbation: studies employing a calcium-sensitive dye, arsenazo III, in liposomes. Proc Natl Acad Sci U S A. 1976 Feb;73(2):510–514. doi: 10.1073/pnas.73.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weissmann G., Sessa G. The action of polyene antibiotics on phospholipid-cholesterol structures. J Biol Chem. 1967 Feb 25;242(4):616–625. [PubMed] [Google Scholar]
  21. Weissmann G., Smolen J. E., Korchak H. Prostaglandins and inflammation: receptor/cyclase coupling as an explanation of why PGEs and PGI2 inhibit functions of inflammatory cells. Adv Prostaglandin Thromboxane Res. 1980;8:1637–1653. [PubMed] [Google Scholar]
  22. Wulf J., Pohl W. G. Calcium ion-flux across phosphatidylcholine membranes mediated by ionophore A23187. Biochim Biophys Acta. 1977 Mar 17;465(3):471–485. doi: 10.1016/0005-2736(77)90266-8. [DOI] [PubMed] [Google Scholar]
  23. Zurier R. B., Weissmann G., Hoffstein S., Kammerman S., Tai H. H. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest. 1974 Jan;53(1):297–309. doi: 10.1172/JCI107550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES