Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Sep;78(9):5613–5617. doi: 10.1073/pnas.78.9.5613

Microfilament or microtubule assembly or disassembly against a force.

T L Hill
PMCID: PMC348804  PMID: 6946498

Abstract

Microtubules (tubulin) or bundles of microfilaments (actin) are thought to cause movement, in some instances, by disassembly or assembly of subunits. Possible examples are the pulling of a chromosome toward a pole in mitosis (anaphase) or the deformation of a cell membrane to change the shape of a cell. This paper examines the relevant elementary bioenergetic considerations when assembly or disassembly of an aggregate occurs against a resisting force. The problem is considered, in the first section, without NTPase activity. Sickle cell hemoglobin aggregation in vivo is an example. In the second section, the tubulin GTPase and actin ATPase activities are included in the analysis.

Full text

PDF
5615

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergen L. G., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J Cell Biol. 1980 Jan;84(1):141–150. doi: 10.1083/jcb.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hill T. L. Bioenergetic aspects and polymer length distribution in steady-state head-to-tail polymerization of actin or microtubules. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4803–4807. doi: 10.1073/pnas.77.8.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hill T. L. Steady-state head-to-tail polymerization of actin or microtubules. II. Two-state and three-state kinetic cycles. Biophys J. 1981 Mar;33(3):353–371. doi: 10.1016/S0006-3495(81)84900-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hill T. L., Tsuchiya T. Theoretical aspects of translocation on DNA: adenosine triphosphatases and treadmilling binding proteins. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4796–4800. doi: 10.1073/pnas.78.8.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Margolis R. L., Wilson L. Addition of colchicine--tubulin complex to microtubule ends: the mechanism of substoichiometric colchicine poisoning. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3466–3470. doi: 10.1073/pnas.74.8.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES