Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Oct;78(10):5958–5962. doi: 10.1073/pnas.78.10.5958

Application of differential scanning microcalorimetry to the study of cellular processes: heat production and glucose oxidation of murine macrophages.

J D Loike, S C Silverstein, J M Sturtevant
PMCID: PMC348956  PMID: 6947210

Abstract

Differential scanning microcalorimetry provides a noninvasive method for studying heat evolution in living cells. We used this technique to measure the heat evolved by thioglycollate broth-elicited mouse macrophages, and the effects of NaF, KCN, cycloheximide, and cytochalasins B and D on this parameter. The total heat evolved in the interval 10--37 degrees C scanned at 1 degree C min-1 ranged from 300 to 2500 X 10(-12) cal (1 Cal = 4.184 J) per cell, depending on cell density, glucose concentration, and the presence or absence of various drugs.

Full text

PDF
5961

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axline S. G., Reaven E. P. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Cell Biol. 1974 Sep;62(3):647–659. doi: 10.1083/jcb.62.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOYSE E. A., OLD L. J., CHOUROULINKOV I. CYTOTOXIC TEST FOR DEMONSTRATION OF MOUSE ANTIBODY. Methods Med Res. 1964;10:39–47. [PubMed] [Google Scholar]
  3. COHN Z. A., BENSON B. THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY. J Exp Med. 1965 Jan 1;121:153–170. doi: 10.1084/jem.121.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EVANS W. H., KARNOVSKY M. L. The biochemical basis of phagocytosis. IV. Some aspects of carbohydrate metabolism during phagocytosis. Biochemistry. 1962 Jan;1:159–166. doi: 10.1021/bi00907a024. [DOI] [PubMed] [Google Scholar]
  5. KIRSCHNER L. B. FLUORIDE INHIBITION OF SODIUM EXTRUSION FROM SWINE ERYTHROCYTES AND ITS METABOLIS CORRELATES. Arch Biochem Biophys. 1964 Jul 20;106:57–64. doi: 10.1016/0003-9861(64)90156-0. [DOI] [PubMed] [Google Scholar]
  6. Kletzien R. F., Perdue J. F., Springer A. Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J Biol Chem. 1972 May 10;247(9):2964–2966. [PubMed] [Google Scholar]
  7. Loike J. D., Kozler V. F., Silverstein S. C. Increased ATP and creatine phosphate turnover in phagocytosing mouse peritoneal macrophages. J Biol Chem. 1979 Oct 10;254(19):9558–9564. [PubMed] [Google Scholar]
  8. Michell R. H., Pancake S. J., Noseworthy J., Karnovsky M. L. Measurement of rates of phagocytosis: the use of cellular monolayers. J Cell Biol. 1969 Jan;40(1):216–224. doi: 10.1083/jcb.40.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PODOLSKY R. J., STURTEVANT J. M. The enthalpy change on adenosine triphosphate hydrolysis. I. J Biol Chem. 1955 Dec;217(2):603–606. [PubMed] [Google Scholar]
  10. Spencer T. L., Lehninger A. L. L-lactate transport in Ehrlich ascites-tumour cells. Biochem J. 1976 Feb 15;154(2):405–414. doi: 10.1042/bj1540405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Spink C., Wadsö I. Calorimetry as an analytical tool in biochemistry and biology. Methods Biochem Anal. 1976;23(0):1–159. doi: 10.1002/9780470110430.ch1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES