Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jun;77(6):3600–3604. doi: 10.1073/pnas.77.6.3600

Genetics of cell surface receptors for bioactive polypeptides: Binding of epidermal growth factor is associated with the presence of human chromosome 7 in human-mouse cell hybrids

Nobuyoshi Shimizu 1, M Ali Behzadian 1, Yoshiko Shimizu 1
PMCID: PMC349665  PMID: 6968072

Abstract

Mouse A9 cells, L-cell-derived mutants deficient in hypoxanthine phosphoribosyltransferase (HPRT; IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) were found to be incapable of binding 125I-labeled epidermal growth factor (EGF) to the cell surface. The A9 cells were fused with human diploid fibroblasts (WI-38) possessing EGF-binding ability, and human-mouse cell hybrids (TA series) were isolated after hypoxanthine/aminopterin/thymidine/ouabain selection. Analyses of isozyme markers and chromosomes of four representative clones of TA hybrids indicated that the expression of EGF-binding ability is correlated with the presence of human chromosome 7 or 19. Four subclones were isolated from an EGF-binding-positive line, TA-4, and segregation of EGF-binding was found to be concordant with the expression of human mitochondrial malate dehydrogenase (MDHM; L-malate:NAD+ oxidoreductase, EC 1.1.1.37), a marker for chromosome 7, but not with glucosephosphate isomerase (GPI; D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), a marker for chromosome 19. Furthermore, evidence from 27 clones of AUG hybrids that were produced between A9 and another human fibroblast line, GM1696, carrying an X/7 chromosome translocation indicated that EGF-binding ability segregates together with human MDHM and two X-linked markers, HPRT and glucose-6-phosphate dehydrogenase (G6PD; D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49), that are located on the translocation chromosome 7p+. These results permit assignment of the gene, designated EGFS, which is associated with the expression of EGF-binding ability, to human chromosome 7 and its localization to the p22-qter region. Because the EGF receptor is reported to be a glycoprotein the EGFS could be either a structural gene(s) for receptor protein or a gene(s) for modifying the receptor protein through glycosylation.

Keywords: hormone, gene mapping, gene regulation

Full text

PDF
3601

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharonov A., Pruss R. M., Herschman H. R. Epidermal growth factor. Relationship between receptor regulation and mitogenesis in 3T3 cells. J Biol Chem. 1978 Jun 10;253(11):3970–3977. [PubMed] [Google Scholar]
  2. Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol. 1975 Dec;67(3):852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
  5. Carpenter G., Cohen S. Influence of lectins on the binding of 125I-labeled EGF to human fibroblasts. Biochem Biophys Res Commun. 1977 Nov 21;79(2):545–552. doi: 10.1016/0006-291x(77)90192-9. [DOI] [PubMed] [Google Scholar]
  6. Das M., Fox C. F. Molecular mechanism of mitogen action: processing of receptor induced by epidermal growth factor. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2644–2648. doi: 10.1073/pnas.75.6.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Das M., Miyakawa T., Fox C. F., Pruss R. M., Aharonov A., Herschman H. R. Specific radiolabeling of a cell surface receptor for epidermal growth factor. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2790–2794. doi: 10.1073/pnas.74.7.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gospodarowicz D., Greenburg G., Bialecki H., Zetter B. R. Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro. 1978 Jan;14(1):85–118. doi: 10.1007/BF02618177. [DOI] [PubMed] [Google Scholar]
  9. Gospodarowicz D., Moran J. S. Growth factors in mammalian cell culture. Annu Rev Biochem. 1976;45:531–558. doi: 10.1146/annurev.bi.45.070176.002531. [DOI] [PubMed] [Google Scholar]
  10. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  11. Hock R. A., Nexø E., Hollenberg M. D. Isolation of the human placenta receptor for epidermal growth factor-urogastrone. Nature. 1979 Feb 1;277(5695):403–405. doi: 10.1038/277403a0. [DOI] [PubMed] [Google Scholar]
  12. Kahan B., DeMars R. Localized Derepression on the Human Inactive X Chromosone in Mouse-Human Cell Hybrids. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1510–1514. doi: 10.1073/pnas.72.4.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozak C. A., Lawrence J. B., Ruddle F. H. A sequential staining technique for the chromosomal analysis of the interspecific mouse/hamster and mouse/human somatic cell hybrids. Exp Cell Res. 1977 Mar 1;105(1):109–117. doi: 10.1016/0014-4827(77)90156-2. [DOI] [PubMed] [Google Scholar]
  14. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  15. Littlefield J. W. The use of drug-resistant markers to study the hybridization of mouse fibroblasts. Exp Cell Res. 1966 Jan;41(1):190–196. doi: 10.1016/0014-4827(66)90558-1. [DOI] [PubMed] [Google Scholar]
  16. McKusick V. A., Ruddle F. H. The status of the gene map of the human chromosomes. Science. 1977 Apr 22;196(4288):390–405. doi: 10.1126/science.850784. [DOI] [PubMed] [Google Scholar]
  17. Nichols E. A., Ruddle F. H. A review of enzyme polymorphism, linkage and electrophoretic conditions for mouse and somatic cell hybrids in starch gels. J Histochem Cytochem. 1973 Dec;21(12):1066–1081. doi: 10.1177/21.12.1066. [DOI] [PubMed] [Google Scholar]
  18. Oger J., Arnason B. G., Pantazis N., Lehrich J., Young M. Synthesis of nerve growth factor by L and 3T3 cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1554–1558. doi: 10.1073/pnas.71.4.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pratt R. M., Pastan I. Decreased binding of epidermal growth factor to BALB/c 3T3 mutant cells defective in glycoprotein synthesis. Nature. 1978 Mar 2;272(5648):68–70. doi: 10.1038/272068a0. [DOI] [PubMed] [Google Scholar]
  20. Roth J. Assay of peptide hormones using cell receptors: application to insulin and to human growth hormone. Methods Enzymol. 1975;37:66–82. doi: 10.1016/s0076-6879(75)37006-7. [DOI] [PubMed] [Google Scholar]
  21. Sauer F., Greenstein R. M., Reardon P., Riddick D. H. Secondary amenorrhea associated with balanced X-autosome translocation. Obstet Gynecol. 1977 Jan;49(1):101–104. [PubMed] [Google Scholar]
  22. Schlessinger J., Shechter Y., Willingham M. C., Pastan I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2659–2663. doi: 10.1073/pnas.75.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shimizu N., Giles R. E., Kucherlapati R. S., Shimizu Y., Ruddle F. H. Somatic cell genetic assignment of the human gene for mitochondrial NADP-linked isocitrate dehydrogenase to the long arm of chromosome 15. Somatic Cell Genet. 1977 Jan;3(1):47–60. doi: 10.1007/BF01550986. [DOI] [PubMed] [Google Scholar]
  24. Shimizu N., Shimizu Y., Kucherlapati R. S., Ruddle F. H. Immunochemical detection of human enzymes in hybrid cells. Cell. 1976 Jan;7(1):123–130. doi: 10.1016/0092-8674(76)90262-2. [DOI] [PubMed] [Google Scholar]
  25. Shimizu N., Shimizu Y., Ruddle F. H. Assignment of the human mitochondrial NAD-linked malate dehydrogenase gene to the p22 leads to qter region of chromosome 7. Cytogenet Cell Genet. 1978;22(1-6):441–445. doi: 10.1159/000130992. [DOI] [PubMed] [Google Scholar]
  26. Siminovitch L. On the nature of hereditable variation in cultured somatic cells. Cell. 1976 Jan;7(1):1–11. doi: 10.1016/0092-8674(76)90249-x. [DOI] [PubMed] [Google Scholar]
  27. Todaro G. J., De Larco J. E., Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature. 1976 Nov 4;264(5581):26–31. doi: 10.1038/264026a0. [DOI] [PubMed] [Google Scholar]
  28. de Larco J. E., Todaro G. J. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4001–4005. doi: 10.1073/pnas.75.8.4001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES