Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957

Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent.

A W Alberts, J Chen, G Kuron, V Hunt, J Huff, C Hoffman, J Rothrock, M Lopez, H Joshua, E Harris, A Patchett, R Monaghan, S Currie, E Stapley, G Albers-Schonberg, O Hensens, J Hirshfield, K Hoogsteen, J Liesch, J Springer
PMCID: PMC349746  PMID: 6933445

Abstract

Mevinolin, a fungal metabolite, was isolated from cultures of Aspergillus terreus. The structure and absolute configuration of mevinolini and its open acid form, mevinolinic acid, were determined by a combination of physical techniques. Mevinolin was shown to be 1,2,6,7,8,8a-hexahydro-beta, delta-dihydroxy-2,6-dimethyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-hepatanoic acid delta-lactone. Mevinolin in the hydroxy-acid form, mevinolinic acid, is a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase [mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34]; its Ki of 0.6 nM can be compared to 1.4 nM for the hydroxy acid form of the previously described related inhibitor, ML-236B (compactin, 6-demethylmevinolin). In the rat, orally administered sodium mevinolinate was an active inhibitor of cholesterol synthesis in an acute assay (50% inhibitory dose = 46 microgram/kg). Furthermore, it was shown that mevinolin was an orally active cholesterol-lowering agent in the dog. Treatment of dogs for 3 weeks with mevinolin at 8 mg/kg per day resulted in a 29.3 +/- 2.5% lowering of plasma cholesterol.

Full text

PDF
3957

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABEL L. L., LEVY B. B., BRODIE B. B., KENDALL F. E. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952 Mar;195(1):357–366. [PubMed] [Google Scholar]
  2. Beg Z. H., Stonik J. A., Brewer H. B., Jr Purification and characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase from chicken liver. FEBS Lett. 1977 Aug 1;80(1):123–129. doi: 10.1016/0014-5793(77)80421-3. [DOI] [PubMed] [Google Scholar]
  3. Bensch W. R., Ingebritsen T. S., Diller E. R. Lack of correlation between the rate of cholesterol biosynthesis and the activity of 3-hydroxy-3-methylgutaryl coenzyme A reductase in rats and in fibroblasts treated with ML-236B. Biochem Biophys Res Commun. 1978 May 15;82(1):247–254. doi: 10.1016/0006-291x(78)90602-2. [DOI] [PubMed] [Google Scholar]
  4. Brown A. G., Smale T. C., King T. J., Hasenkamp R., Thompson R. H. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin 1. 1976;(11):1165–1170. [PubMed] [Google Scholar]
  5. Brown M. S., Faust J. R., Goldstein J. L., Kaneko I., Endo A. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978 Feb 25;253(4):1121–1128. [PubMed] [Google Scholar]
  6. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doi O., Endo A. Specific inhibition of desmosterol synthesis by ML--236B in mouse LM cells grown in suspension in a lipid-free medium. Jpn J Med Sci Biol. 1978 Jun;31(3):225–233. doi: 10.7883/yoken1952.31.225. [DOI] [PubMed] [Google Scholar]
  8. Endo A., Kuroda M., Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976 Dec 31;72(2):323–326. doi: 10.1016/0014-5793(76)80996-9. [DOI] [PubMed] [Google Scholar]
  9. Endo A., Kuroda M., Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot (Tokyo) 1976 Dec;29(12):1346–1348. doi: 10.7164/antibiotics.29.1346. [DOI] [PubMed] [Google Scholar]
  10. Endo A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot (Tokyo) 1979 Aug;32(8):852–854. doi: 10.7164/antibiotics.32.852. [DOI] [PubMed] [Google Scholar]
  11. Endo A., Tsujita Y., Kuroda M., Tanzawa K. Effects of ML-236B on cholesterol metabolism in mice and rats: lack of hypocholesterolemic activity in normal animals. Biochim Biophys Acta. 1979 Nov 21;575(2):266–276. [PubMed] [Google Scholar]
  12. Endo A., Tsujita Y., Kuroda M., Tanzawa K. Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Eur J Biochem. 1977 Jul 1;77(1):31–36. doi: 10.1111/j.1432-1033.1977.tb11637.x. [DOI] [PubMed] [Google Scholar]
  13. Grundy S. M. Cholesterol metabolism in man. West J Med. 1978 Jan;128(1):13–25. [PMC free article] [PubMed] [Google Scholar]
  14. Heller R. A., Shrewsbury M. A. 3-Hydroxy-3-methylglutaryl coenzyme A reductase from rat liver. Its purification, properties, and immunochemical studies. J Biol Chem. 1976 Jun 25;251(12):3815–3822. [PubMed] [Google Scholar]
  15. Kaneko I., Hazama-Shimada Y., Endo A. Inhibitory effects on lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Eur J Biochem. 1978 Jun 15;87(2):313–321. doi: 10.1111/j.1432-1033.1978.tb12380.x. [DOI] [PubMed] [Google Scholar]
  16. Kannel W. B., Castelli W. P., Gordon T., McNamara P. M. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann Intern Med. 1971 Jan;74(1):1–12. doi: 10.7326/0003-4819-74-1-1. [DOI] [PubMed] [Google Scholar]
  17. Kleinsek D. A., Ranganathan S., Porter J. W. Purification of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from rat liver. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1431–1435. doi: 10.1073/pnas.74.4.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuroda M., Tsujita Y., Tanzawa K., Endo A. Hypolipidemic effects in monkeys of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Lipids. 1979 Jun;14(6):585–589. doi: 10.1007/BF02533537. [DOI] [PubMed] [Google Scholar]
  19. Reichl D., Myant N. B., Pflug J. J. Concentration of lipoproteins containing apolipoprotein B in human peripheral lymph. Biochim Biophys Acta. 1977 Oct 24;489(1):98–105. doi: 10.1016/0005-2760(77)90236-3. [DOI] [PubMed] [Google Scholar]
  20. Rodwell V. W., Nordstrom J. L., Mitschelen J. J. Regulation of HMG-CoA reductase. Adv Lipid Res. 1976;14:1–74. doi: 10.1016/b978-0-12-024914-5.50008-5. [DOI] [PubMed] [Google Scholar]
  21. Stamler J. Dietary and serum lipids in the multifactorial etiology of atherosclerosis. Arch Surg. 1978 Jan;113(1):21–25. doi: 10.1001/archsurg.1978.01370130023004. [DOI] [PubMed] [Google Scholar]
  22. Tanzawa K., Endo A. Kinetic analysis of the reaction catalyzed by rat-liver 3-hydroxy-3-methylglutaryl-coenzyme-A reductase using two specific inhibitors. Eur J Biochem. 1979 Jul;98(1):195–201. doi: 10.1111/j.1432-1033.1979.tb13177.x. [DOI] [PubMed] [Google Scholar]
  23. Tsujita Y., Kuroda M., Tanzawa K., Kitano N., Endo A. Hypolipidemic effects in dogs of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Atherosclerosis. 1979 Mar;32(3):307–313. doi: 10.1016/0021-9150(79)90174-6. [DOI] [PubMed] [Google Scholar]
  24. Yamamoto A., Sudo H., Endo A. Therapeutic effects of ML-236B in primary hypercholesterolemia. Atherosclerosis. 1980 Mar;35(3):259–266. doi: 10.1016/0021-9150(80)90124-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES