Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):4048–4050. doi: 10.1073/pnas.77.7.4048

Small phospholipid vesicles: internal pressure, surface tension, and surface free energy.

S H White
PMCID: PMC349766  PMID: 6933453

Abstract

Tanford [Tanford, C. (1979) Proc. Natl. Acad. Sci. USA 76, 3318-3319] used thermodynamic arguments to show that the pressure difference across the bilayer of small phospholipid vesicles must be zero. This paper analyzes the implications of this conclusion in terms of Laplace's law and the basic thermodynamics of interfaces. In its usual form, Laplace's law is of questionable value for the vesicle. If the vesicle is in a state of metastable equilibrium, the surface free energy must be minimal with respect to several thermodynamic variables; the condition (delta F/ delta A) = 0 is not adequate by itself.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  2. Batzri S., Korn E. D. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973 Apr 16;298(4):1015–1019. doi: 10.1016/0005-2736(73)90408-2. [DOI] [PubMed] [Google Scholar]
  3. Brunner J., Skrabal P., Hauser H. Single bilayer vesicles prepared without sonication. Physico-chemical properties. Biochim Biophys Acta. 1976 Dec 2;455(2):322–331. doi: 10.1016/0005-2736(76)90308-4. [DOI] [PubMed] [Google Scholar]
  4. Chrzeszczyk A., Wishnia A., Springer C. S., Jr The intrinsic structural asymmetry of highly curved phospholipid bilayer membranes. Biochim Biophys Acta. 1977 Oct 17;470(2):161–169. doi: 10.1016/0005-2736(77)90097-9. [DOI] [PubMed] [Google Scholar]
  5. Huang C., Charlton J. P. Studies on phosphatidylcholine vesicles. Determination of partial specific volumes by sedimentation velocity method. J Biol Chem. 1971 Apr 25;246(8):2555–2560. [PubMed] [Google Scholar]
  6. Huang C., Mason J. T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc Natl Acad Sci U S A. 1978 Jan;75(1):308–310. doi: 10.1073/pnas.75.1.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  8. Suurkuusk J., Lentz B. R., Barenholz Y., Biltonen R. L., Thompson T. E. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small, single-lamellar dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1976 Apr 6;15(7):1393–1401. doi: 10.1021/bi00652a007. [DOI] [PubMed] [Google Scholar]
  9. Tanford C. Hydrostatic pressure in small phospholipid vesicles. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3318–3319. doi: 10.1073/pnas.76.7.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES