Abstract
An endonuclease has been isolated from human B lymphoblastoid cells that copurifies with an exonucleolytic activity and has been shown to produce double-strand breaks and a high proportion of single-strandedness in phage lambda DNA in vitro. The data are consistent with a model in which single-strand cuts are made by the endonucleolytic activity, possibly in A+T-rich regions of the DNA, followed by creation of single-stranded regions (gaps) precessing from the site of a cut. Generation of overlapping gaps on opposite strands or of a gap opposite a nick would lead to the creation of the banding patterns that we have seen on electrophoretic gels. This endonucleolytic activity copurifies with other enzymes induced by Epstein-Barr virus that relate to the process of viral DNA replication in productively infected cells. However, a more general role is proposed for this class of eukaryotic endonuclease activities. A marked degree of single-strandedness has been found in the replicating DNAs of many eukaryotes, ad these gaps could be generated by endonucleases with associated exonucleolytic activity such as that reported here. This Epstein-Barr virus-induced nuclease activity has been shown to resemble the recBC nuclease isolated from the prokaryote Escherichia coli and also the endonuclease isolated from the eukaryote Chlamydomonas.
Full text
PDF![6194](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b2/350241/f0459912a8d2/pnas00497-0655.png)
![6195](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b2/350241/594d5dd5f582/pnas00497-0656.png)
![6196](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b2/350241/3212dad78fbc/pnas00497-0657.png)
![6197](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b2/350241/b480e722ebd5/pnas00497-0658.png)
![6198](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6b2/350241/97f8deb61a64/pnas00497-0659.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldari C. T., Amaldi F., Buongiorno-Nardelli M. Electron microscopic analysis of replicating DNA of sea urchin embryos. Cell. 1978 Nov;15(3):1095–1107. doi: 10.1016/0092-8674(78)90293-3. [DOI] [PubMed] [Google Scholar]
- Bjursell G., Gussander E., Lindahl T. Long regions of single-stranded DNA in human cells. Nature. 1979 Aug 2;280(5721):420–423. doi: 10.1038/280420a0. [DOI] [PubMed] [Google Scholar]
- Burton W. G., Roberts R. J., Myers P. A., Sager R. A site-specific single-strand endonuclease from the eukaryote Chlamydomonas. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2687–2691. doi: 10.1073/pnas.74.7.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Case S. T., Baker R. F. Investigation into the use of Aspergillus oryzae S1 nuclease in the presence of solvents which destabilize or prevent DNA secondary structure: formaldehyde, formamide, and glyoxal. Anal Biochem. 1975 Apr;64(2):477–484. doi: 10.1016/0003-2697(75)90457-1. [DOI] [PubMed] [Google Scholar]
- Chetsanga C. J., Boyd V., Peterson L., Rushlow K. Single-stranded regions in DNA of old mice. Nature. 1975 Jan 10;253(5487):130–131. doi: 10.1038/253130a0. [DOI] [PubMed] [Google Scholar]
- Clough W. Deoxyribonuclease activity found in Epstein--Barr virus producing lymphoblastoid cells. Biochemistry. 1979 Oct 16;18(21):4517–4521. doi: 10.1021/bi00588a009. [DOI] [PubMed] [Google Scholar]
- Collins J. M., Berry D. E., Cobbs C. S. Structure of parental deoxyribonucleic acid of synchronized HeLa cells. Biochemistry. 1977 Dec 13;16(25):5438–5444. doi: 10.1021/bi00644a006. [DOI] [PubMed] [Google Scholar]
- Davies R. W., Schreier P. H., Buchel D. E. Nucleotide sequence of the attachment site of coliphage lambda. Nature. 1977 Dec 22;270(5639):757–760. doi: 10.1038/270757a0. [DOI] [PubMed] [Google Scholar]
- Dickinson D. G., Baker R. F. Evidence for translocation of DNA sequences during sea urchin embryogenesis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5627–5630. doi: 10.1073/pnas.75.11.5627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flint S. J., Berget S. M., Sharp P. A. Characterization of single-stranded viral DNA sequences present during replication of adenovirus types 2 and 5. Cell. 1976 Dec;9(4 Pt 1):559–571. doi: 10.1016/0092-8674(76)90038-6. [DOI] [PubMed] [Google Scholar]
- Goldmark P. J., Linn S. Purification and properties of the recBC DNase of Escherichia coli K-12. J Biol Chem. 1972 Mar 25;247(6):1849–1860. [PubMed] [Google Scholar]
- Goodman S. R., Prezyna C., Benz W. C. Two Epstein-Barr virus-associated DNA polymerase activities. J Biol Chem. 1978 Dec 10;253(23):8617–8628. [PubMed] [Google Scholar]
- Graessmann A., Graessmann M., Mueller C. Regulatory function of simian virus 40 DNA replication for late viral gene expression. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4831–4834. doi: 10.1073/pnas.74.11.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendler R. W., Pereira M., Scharff R. DNA synthesis involving a complexes form of DNA polymerase I in extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2099–2103. doi: 10.1073/pnas.72.6.2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henson P. The presence of single-stranded regions in mammalian DNA. J Mol Biol. 1978 Mar 15;119(4):487–506. doi: 10.1016/0022-2836(78)90198-5. [DOI] [PubMed] [Google Scholar]
- Hoess R. H., Landy A. Structure of the lambda att sites generated by int-dependent deletions. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5437–5441. doi: 10.1073/pnas.75.11.5437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann P. J., Cheng Y. C. DNase induced after infection of KB cells by herpes simplex virus type 1 or type 2. II. Characterization of an associated endonuclease activity. J Virol. 1979 Nov;32(2):449–457. doi: 10.1128/jvi.32.2.449-457.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann P. J., Cheng Y. C. The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2. I. Purification and characterization of the enzyme. J Biol Chem. 1978 May 25;253(10):3557–3562. [PubMed] [Google Scholar]
- Jacob R. J., Roizman B. Anatomy of herpes simplex virus DNA VIII. Properties of the replicating DNA. J Virol. 1977 Aug;23(2):394–411. doi: 10.1128/jvi.23.2.394-411.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jean J. H., Ben-Porat T. Appearance in vivo of single-stranded complementary ends on parental herpesvirus DNA. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2674–2678. doi: 10.1073/pnas.73.8.2674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landy A., Ross W. Viral integration and excision: structure of the lambda att sites. Science. 1977 Sep 16;197(4309):1147–1160. doi: 10.1126/science.331474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macknight A. D., Leaf A. Regulation of cellular volume. Physiol Rev. 1977 Jul;57(3):510–573. doi: 10.1152/physrev.1977.57.3.510. [DOI] [PubMed] [Google Scholar]
- Malone R. E., Chattoraj D. K., Faulds D. H., Stahl M. M., Stahl F. W. Hotspots for generalized recombination in the Escherichia coli chromosome. J Mol Biol. 1978 Jun 5;121(4):473–491. doi: 10.1016/0022-2836(78)90395-9. [DOI] [PubMed] [Google Scholar]
- Maniatis T., Jeffrey A., van deSande H. Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry. 1975 Aug 26;14(17):3787–3794. doi: 10.1021/bi00688a010. [DOI] [PubMed] [Google Scholar]
- Old R., Murray K., Boizes G. Recognition sequence of restriction endonuclease III from Hemophilus influenzae. J Mol Biol. 1975 Feb 25;92(2):331–339. doi: 10.1016/0022-2836(75)90232-6. [DOI] [PubMed] [Google Scholar]
- Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
- Rosamond J., Endlich B., Telander K. M., Linn S. Mechanisms of action of the type-I restriction endonuclease, ecoB, and the recBC DNase from Escherichia coli. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1049–1057. doi: 10.1101/sqb.1979.043.01.114. [DOI] [PubMed] [Google Scholar]
- SCHACHMAN H. K., ADLER J., RADDING C. M., LEHMAN I. R., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate. J Biol Chem. 1960 Nov;235:3242–3249. [PubMed] [Google Scholar]
- Sutton W. D. A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim Biophys Acta. 1971 Jul 29;240(4):522–531. doi: 10.1016/0005-2787(71)90709-x. [DOI] [PubMed] [Google Scholar]