Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Dec;77(12):6965–6967. doi: 10.1073/pnas.77.12.6965

Intermolecular anti-parallel β sheet: Comparison of predicted and observed conformations of gramicidin S

S Rackovsky 1,*, H A Scheraga 1,
PMCID: PMC350420  PMID: 16592928

Abstract

A recently determined x-ray structure of the hydrated gramicidin S-urea complex is compared with a structure predicted by conformational energy minimization. It is shown that the two structures are in good general agreement, including the prediction of a hydrogen bond between the side-chain amino group of ornithine and the backbone carbonyl of phenylalanine. This agreement demonstrates the power of empirical potential energy methods in conformational analysis and illustrates one method for solution of the multiple-minimum problem for small peptides. It is noted that, in the crystal, gramicidin S is a dimer that forms an intermolecular antiparallel four-stranded β sheet and that differences between the predicted and x-ray structures can be explained by this intermolecular interaction. The residual conformational asymmetry of the x-ray structure is shown to be due to the formation of the complex with urea.

Keywords: conformational analysis, oligopeptide structure, differential-geometric comparison, dimerization, β structure

Full text

PDF
6967

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Santis P., Liquori A. M. Conformation of gramicidin S. Biopolymers. 1971;10(4):699–710. doi: 10.1002/bip.360100408. [DOI] [PubMed] [Google Scholar]
  2. Dygert M., Gō N., Scheraga H. A. Use of a symmetry condition to compute the conformation of gramicidin S1. Macromolecules. 1975 Nov-Dec;8(6):750–761. doi: 10.1021/ma60048a016. [DOI] [PubMed] [Google Scholar]
  3. Gibbons W. A., Némethy G., Stern A., Craig L. C. An approach to conformational analysis of peptides and proteins in solution based on a combination of nuclear magnetic resonance spectroscopy and conformational energy calculations. Proc Natl Acad Sci U S A. 1970 Sep;67(1):239–246. doi: 10.1073/pnas.67.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HODGKIN D. C., OUGHTON B. M. Possible molecular models for gramicidin S and their relationship to present ideas of protein structure. Biochem J. 1957 Apr;65(4):752–756. doi: 10.1042/bj0650752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jones C. R., Kuo M., Gibbons W. A. Multiple solution conformations and internal rotations of the decapeptide gramicidin S. J Biol Chem. 1979 Oct 25;254(20):10307–10312. [PubMed] [Google Scholar]
  6. Kuo M., Jones C. R., Mahn T. H., Miller P. R., Nicholls L. J., Gibbons W. A. Simplification and spin-spin analysis of the side chain proton magnetic resonance spectrum of the decapeptide gramicidin S using difference scalar decoupling and biosynthesis of specifically deuterated analogs. J Biol Chem. 1979 Oct 25;254(20):10301–10306. [PubMed] [Google Scholar]
  7. Liquori A. M., De Santis P., Kovacs A. L., Mazzarella L. Stereochemical code of amino-acid residues: the molecular conformation of gramicidine S. Nature. 1966 Sep 3;211(5053):1039–1041. doi: 10.1038/2111039a0. [DOI] [PubMed] [Google Scholar]
  8. Momany F. A., Vanderkooi G., Tuttle R. W., Scheraga H. A. Minimization of polypeptide energy. IV. Further studies of gramicidin S. Biochemistry. 1969 Feb;8(2):744–746. doi: 10.1021/bi00830a041. [DOI] [PubMed] [Google Scholar]
  9. Ovchinnikov Y. A., Ivanov V. T., Bystrov V. F., Miroshnikov A. I., Shepel E. N., Abdullaev N. D., Efremov E. S., Senyavina L. B. The conformation of gramicidin S and its N,N'-diacetyl derivative in solutions. Biochem Biophys Res Commun. 1970 Apr 24;39(2):217–225. doi: 10.1016/0006-291x(70)90781-3. [DOI] [PubMed] [Google Scholar]
  10. Rae I. D., Scheraga H. A. Shielding effects of the D-Phe aromatic ring in the 1H NMR spectrum of gramicidine S. Biochem Biophys Res Commun. 1978 Mar 30;81(2):481–485. doi: 10.1016/0006-291x(78)91559-0. [DOI] [PubMed] [Google Scholar]
  11. Rae I. D., Stimson E. R., Scheraga H. A. Nuclear Overhauser effects and the conformation of gramicidin S. Biochem Biophys Res Commun. 1977 Jul 11;77(1):225–229. doi: 10.1016/s0006-291x(77)80186-1. [DOI] [PubMed] [Google Scholar]
  12. SCHMIDT G. M., HODGKIN D. C., OUGHTON B. M. A crystallographic study of some derivatives of gramicidin S. Biochem J. 1957 Apr;65(4):744–750. doi: 10.1042/bj0650744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwyzer R., Ludescher U. Conformational study of gramicidin S using the phthalimide group as nuclear magnetic resonance marker. Biochemistry. 1968 Jul;7(7):2519–2522. doi: 10.1021/bi00847a011. [DOI] [PubMed] [Google Scholar]
  14. Scott R. A., Vanderkooi G., Tuttle R. W., Shames P. M., Scheraga H. A. Minimization of polypeptide energy, iii. Application of a rapid energy minimization technique to the calculation of preliminary structures of gramicidin-s. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2204–2211. doi: 10.1073/pnas.58.6.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stern A., Gibbons W. A., Craig L. C. A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1968 Oct;61(2):734–741. doi: 10.1073/pnas.61.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vanderkooi G., Leach S. J., Némethy G., Scott R. A., Scheraga H. A. Initial attempts at a theoretical calculation of the conformation of gramicidin-S. Biochemistry. 1966 Sep;5(9):2991–2997. doi: 10.1021/bi00873a031. [DOI] [PubMed] [Google Scholar]
  17. WARNER D. T. Proposed molecular models of gramicidin S and other polypeptides. Nature. 1961 Apr 8;190:120–128. doi: 10.1038/190120a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES