Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1979 Feb;29(2):716–725. doi: 10.1128/jvi.29.2.716-725.1979

Interruption-deficient mutants of bacteriophage T5 I. Isolation and general properties.

S G Rogers, E A Godwin, E S Shinosky, M Rhoades
PMCID: PMC353203  PMID: 430606

Abstract

Mutations of bacteriophage T5 were isolated which lack one or more of the natural single-chain interruptions that occur in the mature DNA of this virus. Interruption-deficient mutants were detected by screening survivors of hydroxylamine mutagenesis for altered DNA structure by electrophoresis in agarose slab gels. Over 60 independent mutants were isolated from a survey of approximately 800 phages particles. All of the mutants were viable and could be grouped into two classes. Mutants in one class lacked one of the localized sites where interruptions occur in T5 DNA. To date, mutants that affect five different sites have been obtained. Mutants in the other class were essentially free from interruptions or had a reduced frequency of interruptions throughout the genome. The members of this class included several amber mutants. Complementation tests indicated that at least two genes are required for the presence of interruptions in mature T5 DNA.

Full text

PDF
723

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bujard H., Hendrickson H. E. Structure and function of the genome of coliphage T5. 1. The physical structure of the chromosome of T5 + . Eur J Biochem. 1973 Mar 15;33(3):517–528. doi: 10.1111/j.1432-1033.1973.tb02711.x. [DOI] [PubMed] [Google Scholar]
  2. Bujard H. Location of single-strand interruptions in the DNA of bacteriophage T5. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1167–1174. doi: 10.1073/pnas.62.4.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CRAWFORD L. V. Nucleic acid metabolism in Escherichia coli infected with phage T5. Virology. 1959 Apr;7(4):359–374. doi: 10.1016/0042-6822(59)90065-0. [DOI] [PubMed] [Google Scholar]
  4. Chinnadurai G., McCorquodale D. J. Requirement of a phage-induced 5'-exonuclease for the expression of late genes of bacteriophage T5. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3502–3505. doi: 10.1073/pnas.70.12.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doermann A. H., Boehner L. The identification of complex genotypes in bacteriophage T4. I. Methods. Genetics. 1970 Nov;66(3):417–428. doi: 10.1093/genetics/66.3.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FREESE E., STRACK H. B. Induction of mutations in transforming DNA by hydroxylamine. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1796–1803. doi: 10.1073/pnas.48.10.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HERTEL R., MARCHI L., MULLER K. Density mutants of phage T5. Virology. 1962 Dec;18:576–581. doi: 10.1016/0042-6822(62)90060-0. [DOI] [PubMed] [Google Scholar]
  8. Hayward G. S., Smith M. G. The chromosome of bacteriophage T5. I. Analysis of the single-stranded DNA fragments by agarose gel electrophoresis. J Mol Biol. 1972 Feb 14;63(3):383–395. doi: 10.1016/0022-2836(72)90435-4. [DOI] [PubMed] [Google Scholar]
  9. Hayward G. S. Unique double-stranded fragments of bacteriophage T5 DNA resulting from preferential shear-induced breakage at nicks. Proc Natl Acad Sci U S A. 1974 May;71(5):2108–2112. doi: 10.1073/pnas.71.5.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage T5. 3. Patterns of deoxyribonucleic acid synthesis induced by mutants of T5 and the identification of genes influencing the appearance of phage-induced dihydrofolate reductase and deoxyribonuclease. J Virol. 1972 Jun;9(6):981–989. doi: 10.1128/jvi.9.6.981-989.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacquemin-Sablon A., Richardson C. C. Analysis of the interruptions in bacteriophage T5 DNA. J Mol Biol. 1970 Feb 14;47(3):477–493. doi: 10.1016/0022-2836(70)90316-5. [DOI] [PubMed] [Google Scholar]
  12. Johnston J. V., Nichols B. P., Donelson J. E. Distribution of "minor" nicks in bacteriophage T5 DNA. J Virol. 1977 May;22(2):510–519. doi: 10.1128/jvi.22.2.510-519.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LANG D., Shaw A. R., McCorquodale D. J. Molecular weights of DNA from bacteriophages T5, T5st(O), BF23, and BF23st(4). J Virol. 1975 Jan;17(1):296–297. doi: 10.1128/jvi.17.1.296-297.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moyer R. W., Fu A. S., Szabo C. Regulation of bacteriophage T5 development by ColI factors. J Virol. 1972 May;9(5):804–812. doi: 10.1128/jvi.9.5.804-812.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moyer R. W., Rothe C. T. Role of the T5 gene D15 nuclease in the generation of nicked bacteriophage T5 DNA. J Virol. 1977 Oct;24(1):177–193. doi: 10.1128/jvi.24.1.177-193.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nichols B. P., Donelson J. E. Sequence analysis of the nicks and termini of bacteriophage T5 DNA. J Virol. 1977 May;22(2):520–526. doi: 10.1128/jvi.22.2.520-526.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nichols B. P., Donelson J. E. The nucleotide sequence at the 3'-termini of three major T5 DNA fragments. Virology. 1977 Dec;83(2):396–403. doi: 10.1016/0042-6822(77)90184-2. [DOI] [PubMed] [Google Scholar]
  18. Rhoades M. Localization of single-chain interruptions in bacteriophage T5 DNA. II. Electrophoretic studies. J Virol. 1977 Sep;23(3):737–750. doi: 10.1128/jvi.23.3.737-750.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rhoades M., Rhoades E. A. Terminal repetition in the DNA of bacteriophage T5. J Mol Biol. 1972 Aug 21;69(2):187–200. doi: 10.1016/0022-2836(72)90224-0. [DOI] [PubMed] [Google Scholar]
  20. Rogers S. G., Hamlett N. V., Rhoades M. Interruption-deficient mutants of bacteriophage T5. II. Properties of a mutant lacking a specific interruption. J Virol. 1979 Feb;29(2):726–734. doi: 10.1128/jvi.29.2.726-734.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rogers S. G., Rhoades M. Bacteriophage T5-induced endonucleases that introduce site-specific single-chain interruptions in duplex DNA. Proc Natl Acad Sci U S A. 1976 May;73(5):1576–1580. doi: 10.1073/pnas.73.5.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saigo K. Denaturation mapping and chromosome structure in bacteriophage T5. Virology. 1975 Nov;68(1):166–172. doi: 10.1016/0042-6822(75)90158-0. [DOI] [PubMed] [Google Scholar]
  23. Scheible P. P., Rhoades E. A., Rhoades M. Localization of single-chain interruptions in bacteriophage T5 DNA I. Electron microscopic studies. J Virol. 1977 Sep;23(3):725–736. doi: 10.1128/jvi.23.3.725-736.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scheible P. P., Rhoades M. Heteroduplex mapping of heat-resistant deletion mutants of bacteriophage t5. J Virol. 1975 May;15(5):1276–1280. doi: 10.1128/jvi.15.5.1276-1280.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. THOMAS C. A., Jr, RUBENSTEIN I. THE ARRANGEMENTS OF NUCLEOTIDE SEQUENCES IN T2 AND T5 BACTERIOPHAGE DNA MOLECULES. Biophys J. 1964 Mar;4:93–106. doi: 10.1016/s0006-3495(64)86771-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tessman I. Mutagenic treatment of double- and single-stranded DNA phages T4 ans S13 with hydroxylamine. Virology. 1968 Jun;35(2):330–333. doi: 10.1016/0042-6822(68)90275-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES