Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1980 Dec;36(3):805–815. doi: 10.1128/jvi.36.3.805-815.1980

Association of pp60src and src protein kinase activity with the plasma membrane of nonpermissive and permissive avian sarcoma virus-infected cells.

R A Krzyzek, R L Mitchell, A F Lau, A J Faras
PMCID: PMC353708  PMID: 6257928

Abstract

The intracellular localization of pp60src and src protein kinase activity in avian sarcoma virus (ASV)-infected chicken embryo fibroblasts and transformed and morphologically reverted field vole cells was examined by subcellular fractionation procedures. Fractionation by differential centrifugation of Dounce-homogenized cellular extracts prepared from vole cells showed that 83 to 91% of pp60src sedimented with particulate subcellular components from both transformed and revertant vole cells. A slightly lesser amount (60 to 70%) of pp60src was found associated with the particulate fraction from ASV-infected chicken embryo fibroblasts. The distribution of src protein kinase activity in the cytosol and particulate cell fractions was identical to that of pp60src, indicating no detectable differences in the activity of cytosol- and particulate-associated pp60src. When subcellular components of the cell were fractionated by discontinuous sucrose gradient centrifugation, similar amounts of both pp60src and src protein kinase activity cosedimented with the plasma membrane fractions from both transformed and revertant vole cells, as well as from ASV-infected chicken embryo fibroblasts. src protein kinase activity associated with plasma membrane fractions prepared from vole cells and ASV-infected chicken embryo fibroblasts was resistant to extraction with high salt concentrations, but partial elution was achieved with nonionic detergent. Thus, in both transformed and morphologically reverted vole cells, pp60src is intimately associated with the plasma membrane. Since transforming virus can be rescued from revertant vole cells by fusion to chicken embryo fibroblasts, revertant vole cell pp60src is capable of inducing morphological transformation. Thus, although the data presented herein suggest that transformation requires the association of pp60src with the plasma membrane, the binding of pp60src to the plasma membrane per se is insufficient to induce morphological transformation and requires the additional interaction with a specific target membrane protein which appears to be defective in revertant vole cells.

Full text

PDF
807

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
  2. Bishop J. M., Levinson W. E., Quintrell N., Sullivan D., Fanshier L., Jackson J. The low molecular weight RNAs of Rous sarcoma virus. I. The 4 S RNA. Virology. 1970 Sep;42(1):182–195. doi: 10.1016/0042-6822(70)90251-5. [DOI] [PubMed] [Google Scholar]
  3. Brugge J. S., Erikson R. L. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature. 1977 Sep 22;269(5626):346–348. doi: 10.1038/269346a0. [DOI] [PubMed] [Google Scholar]
  4. Brugge J. S., Steinbaugh P. J., Erikson R. L. Characterization of the avian sarcoma virus protein p60src. Virology. 1978 Nov;91(1):130–140. doi: 10.1016/0042-6822(78)90361-6. [DOI] [PubMed] [Google Scholar]
  5. Chang K. J., Bennett V., Cuatrecasas P. Membrane receptors as general markers for plasma membrane isolation procedures. The use of 125-I-labeled wheat germ agglutinin, insulin, and cholera toxin. J Biol Chem. 1975 Jan 25;250(2):488–500. [PubMed] [Google Scholar]
  6. Collett M. S., Brugge J. S., Erikson R. L., Lau A. F., Krzyzek R. A., Faras A. J. The src gene product of transformed and morphologically reverted ASV-infected mammalian cells. Nature. 1979 Sep 20;281(5728):195–198. doi: 10.1038/281195a0. [DOI] [PubMed] [Google Scholar]
  7. Collett M. S., Erikson R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2021–2024. doi: 10.1073/pnas.75.4.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collett M. S., Purchio A. F., Erikson R. L. Avian sarcoma virus-transforming protein, pp60src shows protein kinase activity specific for tyrosine. Nature. 1980 May 15;285(5761):167–169. doi: 10.1038/285167a0. [DOI] [PubMed] [Google Scholar]
  9. Cuatrecasas P. Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells. Biochemistry. 1973 Mar 27;12(7):1312–1323. doi: 10.1021/bi00731a011. [DOI] [PubMed] [Google Scholar]
  10. Faras A. J., Dibble N. A. RNA-directed DNA synthesis by the DNA polymerase of Rous sarcoma virus: structural and functional identification of 4S primer RNA in uninfected cells. Proc Natl Acad Sci U S A. 1975 Mar;72(3):859–863. doi: 10.1073/pnas.72.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Isaka T., Yoshida M., Owada M., Toyoshima K. Alterations in membrane polypeptides of chick embryo fibroblasts induced by transformation with avian sarcoma viruses. Virology. 1975 May;65(1):226–237. doi: 10.1016/0042-6822(75)90023-9. [DOI] [PubMed] [Google Scholar]
  13. Krueger J. G., Wang E., Goldberg A. R. Evidence that the src gene product of Rous sarcoma virus is membrane associated. Virology. 1980 Feb;101(1):25–40. doi: 10.1016/0042-6822(80)90480-8. [DOI] [PubMed] [Google Scholar]
  14. Krzyzek R. A., Lau A. F., Faras A. J. Nature of Rous sarcoma virus-specific RNA in transformed and revertant field vole cells. J Virol. 1979 Feb;29(2):507–515. doi: 10.1128/jvi.29.2.507-516.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krzyzek R. A., Lau A. F., Faras A. J., Spector D. H. Post-transcriptional control of avian oncornavirus transforming gene sequences in mammalian cells. Nature. 1977 Sep 8;269(5624):175–179. doi: 10.1038/269175a0. [DOI] [PubMed] [Google Scholar]
  16. Krzyzek R. A., Lau A. F., Vogt P. K., Faras A. J. Quantitation and localization of Rous sarcoma virus-specific RNA in transformed and revertant field vole cells. J Virol. 1978 Feb;25(2):518–526. doi: 10.1128/jvi.25.2.518-526.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lau A. F., Krzyzek R. A., Brugge J. S., Collett M. S., Erikson R. L., Faras A. J. Expression of the src-gene product, pp60src, in transformed and reverted mammalian cells infected with avian sarcoma virus. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 2):1057–1064. doi: 10.1101/sqb.1980.044.01.114. [DOI] [PubMed] [Google Scholar]
  18. Lau A. F., Krzyzek R. A., Brugge J. S., Erikson R. L., Schollmeyer J., Faras A. J. Morphological revertants of an avian sarcoma virus-transformed mammalian cell line exhibit tumorigenicity and contain pp60src. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3904–3908. doi: 10.1073/pnas.76.8.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levinson A. D., Oppermann H., Levintow L., Varmus H. E., Bishop J. M. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell. 1978 Oct;15(2):561–572. doi: 10.1016/0092-8674(78)90024-7. [DOI] [PubMed] [Google Scholar]
  20. Plagemann P. G. Choline metabolism and membrane formation in rat hepatoma cells grown in suspension culture. I. Incorporation of choline into phosphatidylcholine of mitochondria and other membranous structures and effect of metabolic inhibitors. Arch Biochem Biophys. 1968 Oct;128(1):70–87. doi: 10.1016/0003-9861(68)90009-x. [DOI] [PubMed] [Google Scholar]
  21. Rohrschneider L. R. Immunofluorescence on avian sarcoma virus-transformed cells: localization of the src gene product. Cell. 1979 Jan;16(1):11–24. doi: 10.1016/0092-8674(79)90183-1. [DOI] [PubMed] [Google Scholar]
  22. Rübsamen H., Friis R. R., Bauer H. Src Gene product from different strains of avian sarcoma virus: Kinetics and possible mechanism of heat inactivation of protein kinase activity from cells infected by transformation-defective, temperature-sensitive mutant and wild-type virus. Proc Natl Acad Sci U S A. 1979 Feb;76(2):967–971. doi: 10.1073/pnas.76.2.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  24. Willingham M. C., Jay G., Pastan I. Localization of the ASV src gene product to the plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell. 1979 Sep;18(1):125–134. doi: 10.1016/0092-8674(79)90361-1. [DOI] [PubMed] [Google Scholar]
  25. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]
  26. de la Maza L. M., Faras A., Varmus H., Vogt P. K., Yunis J. J. Integration of avian sarcoma virus specific DNA in mammalian chromatin. Exp Cell Res. 1975 Jul;93(2):484–486. doi: 10.1016/0014-4827(75)90477-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES