Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1977 Feb;21(2):796–801. doi: 10.1128/jvi.21.2.796-801.1977

Rifampin and vaccinia DNA.

M Esteban
PMCID: PMC353882  PMID: 833950

Abstract

The effect of rifampin on the replication of vaccinia DNA was studied in mouse L cells by a cytochemical techinque and by alkaline sucrose sedimentation analysis of newly synthesized viral DNA molecules. By the use of a fluorescent DNA-binding compound (Hoechst 33258), the sequential appearance, size, and location of the viral "factories" in rifampin-treated, virus-infected cells were found to be indistinguishable from those observed in untreated, infected cells. Sedimentation analysis in alkaline scurose gradients of the viral DNA molecules labeled in pulse-chase experiments showed that formation of small fragments, elongation into "intermediate"-sized molecules, and maturation into full-length viral DNA and, finally, into cross-linked viral DNA molecules occurred in the absence or presence of rifampin. The results support the view that the primary effect of the drug is related to assembly or morphogenesis.

Full text

PDF
797

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Ishai Z., Heller E., Goldblum N., Becker Y. Rifampicin and poxvirus replication. Nature. 1969 Oct 4;224(5214):29–32. doi: 10.1038/224029a0. [DOI] [PubMed] [Google Scholar]
  2. Berns K. I., Silverman C. Natural occurrence of cross-linked vaccinia virus deoxyribonucleic acid. J Virol. 1970 Mar;5(3):299–304. doi: 10.1128/jvi.5.3.299-304.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAIRNS J. The initiation of vaccinia infection. Virology. 1960 Jul;11:603–623. doi: 10.1016/0042-6822(60)90103-3. [DOI] [PubMed] [Google Scholar]
  4. DALES S., SIMINOVITCH L. The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. J Biophys Biochem Cytol. 1961 Aug;10:475–503. doi: 10.1083/jcb.10.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fil W., Holowczak J. A., Flores L., Thomas V. Biochemical and electron microscopic observations of vaccinia virus morphogenesis in HeLa cells after hydroxyurea reversal. Virology. 1974 Oct;61(2):376–396. doi: 10.1016/0042-6822(74)90275-x. [DOI] [PubMed] [Google Scholar]
  6. Geshelin P., Berns K. I. Characterization and localization of the naturally occurring cross-links in vaccinia virus DNA. J Mol Biol. 1974 Oct 5;88(4):785–796. doi: 10.1016/0022-2836(74)90399-4. [DOI] [PubMed] [Google Scholar]
  7. Grimley P. M., Rosenblum E. N., Mims S. J., Moss B. Interruption by Rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J Virol. 1970 Oct;6(4):519–533. doi: 10.1128/jvi.6.4.519-533.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heller E., Argaman M., Levy H., Goldblum N. Selective inhibition of vaccinia virus by the antibiotic rifampicin. Nature. 1969 Apr 19;222(5190):273–274. doi: 10.1038/222273a0. [DOI] [PubMed] [Google Scholar]
  9. JOKLIK W. K., BECKER Y. THE REPLICATION AND COATING OF VACCINIA DNA. J Mol Biol. 1964 Dec;10:452–474. doi: 10.1016/s0022-2836(64)80066-8. [DOI] [PubMed] [Google Scholar]
  10. JOKLIK W. K. The preparation and characteristics of highly purified radioactively labelled poxvirus. Biochim Biophys Acta. 1962 Aug 20;61:290–301. doi: 10.1016/0926-6550(62)90091-9. [DOI] [PubMed] [Google Scholar]
  11. Katz E., Grimley P., Moss B. Reversal of anti-viral effects of rifampicin. Nature. 1970 Sep 5;227(5262):1050–1051. doi: 10.1038/2271050a0. [DOI] [PubMed] [Google Scholar]
  12. Mcauslan B. R. Rifampicin inhibition of vaccinia replication. Biochem Biophys Res Commun. 1969 Oct 8;37(2):289–295. doi: 10.1016/0006-291x(69)90733-5. [DOI] [PubMed] [Google Scholar]
  13. Moss B., Katz E., Rosenblum E. N. Vaccinia virus directed RNA and protein synthesis in the presence of rifampicin. Biochem Biophys Res Commun. 1969 Aug 22;36(5):858–865. doi: 10.1016/0006-291x(69)90688-3. [DOI] [PubMed] [Google Scholar]
  14. Moss B., Rosenblum E. N., Garon C. F. Glycoprotein synthesis in cells infected with vaccinia virus. I. Non-virion glycoproteins. Virology. 1971 Nov;46(2):221–232. doi: 10.1016/0042-6822(71)90025-0. [DOI] [PubMed] [Google Scholar]
  15. Moss B., Rosenblum E. N., Grimley P. M. Assembly of vaccinia virus particles from polypeptides made in the presence of rifampicin. Virology. 1971 Jul;45(1):123–134. doi: 10.1016/0042-6822(71)90119-x. [DOI] [PubMed] [Google Scholar]
  16. Moss B., Rosenblum E. N., Grimley P. M. Assembly of virus particles during mixed infection with wild-type vaccinia and a rifampicin-resistant mutant. Virology. 1971 Jul;45(1):135–148. doi: 10.1016/0042-6822(71)90120-6. [DOI] [PubMed] [Google Scholar]
  17. Moss B., Rosenblum E. N., Katz E., Grimley P. M. Rifampicin: a specific inhibitor of vaccinia virus assembly. Nature. 1969 Dec 27;224(5226):1280–1284. doi: 10.1038/2241280a0. [DOI] [PubMed] [Google Scholar]
  18. Nagaya A., Pogo B. G., Dales S. Biogenesis of vaccinia: separation of early stages from maturation by means of rifampicin. Virology. 1970 Apr;40(4):1039–1051. doi: 10.1016/0042-6822(70)90150-9. [DOI] [PubMed] [Google Scholar]
  19. Pennington T. H., Follett E. A., Szilágyi J. F. Events in vaccinia virus-infected cells following the reversal of the antiviral action of rifampicin. J Gen Virol. 1970 Dec;9(3):225–237. doi: 10.1099/0022-1317-9-3-225. [DOI] [PubMed] [Google Scholar]
  20. Pogo B. G. Biogenesis of vaccinia: effect of rifampicin on transcription. Virology. 1971 Jun;44(3):576–581. doi: 10.1016/0042-6822(71)90371-0. [DOI] [PubMed] [Google Scholar]
  21. Pogo B. G., Dales S. Regulation of the synthesis of nucleotide phosphohydrolase and neutral deoxyribonuclease: two activities present within purified vaccina virus. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1297–1303. doi: 10.1073/pnas.63.4.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosenkranz H. S., Rose H. M., Morgan C., Hsu K. C. The effect of hydroxyurea on virus development. II. Vaccinia virus. Virology. 1966 Apr;28(4):510–519. doi: 10.1016/0042-6822(66)90235-2. [DOI] [PubMed] [Google Scholar]
  23. Russell W. C., Newman C., Williamson D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature. 1975 Feb 6;253(5491):461–462. doi: 10.1038/253461a0. [DOI] [PubMed] [Google Scholar]
  24. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  25. Subak-Sharpe J. H., Timbury M. C., Williams J. F. Rifampicin inhibits the growth of some mammalian viruses. Nature. 1969 Apr 26;222(5191):341–345. doi: 10.1038/222341a0. [DOI] [PubMed] [Google Scholar]
  26. Tan K. B., McAuslan B. R. Effect of rifampicin on poxvirus protein synthesis. J Virol. 1970 Sep;6(3):326–332. doi: 10.1128/jvi.6.3.326-332.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wehrli W., Staehelin M. Actions of the rifamycins. Bacteriol Rev. 1971 Sep;35(3):290–309. doi: 10.1128/br.35.3.290-309.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES