Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1975 Jul;16(1):184–191. doi: 10.1128/jvi.16.1.184-191.1975

Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX.

P Thurm, A J Garro
PMCID: PMC354647  PMID: 805847

Abstract

Bacillus subtilis mutants with lesions in PBSX prophage genes have been isolated. One of these appears to be a regulatory mutant and is defective for mitomycin C-induced derepression of PBSX; the others are defective for phage capsid formation. All of the PBSX structural proteins are synthesized during induction of the capsid defective mutants; however, several of these proteins exhibit abnormal serological reactivity with anti-PBSX antiserum. The two head proteins X4 and X7 are not immunoprecipitable in a mutant which fails to assemble phage head structures. In the tail mutant, proteins X5 and X6 are not immunoprecipitable, tails are not assembled, and a possible tail protein precursor remains uncleaved. The noninducible mutant does not synthesize any PBSX structural proteins after exposure to mitomycin C. The mutation is specific for PBSX since ø105 and SPO2 lysogens of the mutant are inducible. All of the known PBSX-specific mutations were shown to be clustered between argC and metC on the host chromosome. In addition, the metC marker was shown to be present in multiple copies in cells induced for PBSX replication. This suggests that the derepressed prophage replicates while still integrated and that replication extends into the adjacent regions of the host chromosome.

Full text

PDF
191

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armentrout R. W., Rutberg L. Heat induction of prophage phi 105 in Bacillus subtilis: replication of the bacterial and bacteriophage genomes. J Virol. 1971 Oct;8(4):455–468. doi: 10.1128/jvi.8.4.455-468.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bridges B. A. Evidence for a further dark repair process in bacteria. Nat New Biol. 1972 Nov 8;240(97):52–53. doi: 10.1038/newbio240052a0. [DOI] [PubMed] [Google Scholar]
  3. Dubnau D., Goldthwaite C., Smith I., Marmur J. Genetic mapping in Bacillus subtilis. J Mol Biol. 1967 Jul 14;27(1):163–185. doi: 10.1016/0022-2836(67)90358-0. [DOI] [PubMed] [Google Scholar]
  4. Ephrati-Elizur E., Yosuv D., Shmueli E., Horowitz A. Thymineless death in Bacillus subtilis: correlation between cell lysis and deoxyribonucleic acid breakdown. J Bacteriol. 1974 Jul;119(1):36–43. doi: 10.1128/jb.119.1.36-43.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garro A. J., Leffert H., Marmur J. Genetic mapping of a defective bacteriophage on the chromosome of Bacillus subtilis 168. J Virol. 1970 Sep;6(3):340–343. doi: 10.1128/jvi.6.3.340-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haas M., Yoshikawa H. Defective bacteriophage PBSH in Bacillus subtilis. II. Intracellular development of the induced prophage. J Virol. 1969 Feb;3(2):248–260. doi: 10.1128/jvi.3.2.248-260.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JACOB F., CAMPBELL A. Sur le système de répression assurant l'immunité chez les bactéries lysogenes. C R Hebd Seances Acad Sci. 1959 Jun 1;248(22):3219–3221. [PubMed] [Google Scholar]
  8. Kirby E. P., Jacob F., Goldthwait D. A. Prophage induction and filament formation in a mutant strain of Escherichia coli. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1903–1910. doi: 10.1073/pnas.58.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ogawa T., Tomizawa J. Absortive lysogenization of bacteriophage lambda b2 and residual immunity of non-lysogenic segregants. J Mol Biol. 1967 Jan 28;23(2):225–245. doi: 10.1016/s0022-2836(67)80030-5. [DOI] [PubMed] [Google Scholar]
  10. Okamoto K., Mudd J. A., Mangan J., Huang W. M., Subbaiah T. V., Marmur J. Properties of the defective phage of Bacillus subtilis. J Mol Biol. 1968 Jun 28;34(3):413–428. doi: 10.1016/0022-2836(68)90169-1. [DOI] [PubMed] [Google Scholar]
  11. Okubo S., Romig W. R. Comparison of ultraviolet sensitivity of Bacillus subtilis bacteriophage SPO2 and its infectious DNA. J Mol Biol. 1965 Nov;14(1):130–142. doi: 10.1016/s0022-2836(65)80235-2. [DOI] [PubMed] [Google Scholar]
  12. Ptashne M. Specific binding of the lambda phage repressor to lambda DNA. Nature. 1967 Apr 15;214(5085):232–234. doi: 10.1038/214232a0. [DOI] [PubMed] [Google Scholar]
  13. Rudner R., Remeza V. Chromatographically fractionated complementary strands of Bacillus subtilis deoxyribonucleic acid: biological properties. J Bacteriol. 1973 Feb;113(2):739–753. doi: 10.1128/jb.113.2.739-753.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rutberg B., Rutberg L. Growth of bacteriophage phi 105 and its deoxyribonucleic acid in radiation-sensitive mutants of Bacillus subtilis. J Virol. 1971 Dec;8(6):919–921. doi: 10.1128/jvi.8.6.919-921.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Siegel E. C., Marmur J. Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168. J Virol. 1969 Nov;4(5):610–618. doi: 10.1128/jvi.4.5.610-618.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thurm P., Garro A. J. Bacteriophage-specific protein synthesis during induction of the defective Bacillus subtilis bacteriophage PBSX. J Virol. 1975 Jul;16(1):179–183. doi: 10.1128/jvi.16.1.179-183.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yoshikawa H. DNA synthesis during germination of Bacillus subtilis spores. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1476–1483. doi: 10.1073/pnas.53.6.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES