Abstract
Phage 2 adsorbed to Pseudomonas aeruginosa strain BI in 5 mM Tris buffer, providing that cations like Na+, Mg2+, or Ca2+ were present. Adsorption was observed over a broad pH range, reaching a maximum level around pH 7.5, which coincided with the pH required for maximal activity of the phage 2-associated slime polysaccharide depolymerase. Mutants of strain BI and other strains of P. aeruginosa possessing slime layers that were devoid of phage 2 depolymerase substrate were incapable of adsorbing phage 2. On the other hand, those strains containing substrate for the phage 2 depolymerase in the slime layer were capable of adsorbing phage 2. The same relationship of phage depolymerase-substrate interaction to phage adsorption was observed with Pseudomonas phage 8, which possesses a depolymerase that differs in its specificity from the phage 2 depolymerase. The receptor-like activity of purified slime containing the specific substrate for the phage-associated depolymerase was demonstrable by its ability to inactivate phage. However, receptor-like activity or phage inactivation was not observed with those slimes that were devoid of the depolymerase substrate.
Full text
PDF![22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011e/355253/67303f3e9b58/jvirol00241-0036.png)
![23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011e/355253/629cd8e7d120/jvirol00241-0037.png)
![24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011e/355253/75e2cb4ff7bb/jvirol00241-0038.png)
![25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011e/355253/41ed11ae7954/jvirol00241-0039.png)
![26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011e/355253/4e059f0fcc22/jvirol00241-0040.png)
![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/011e/355253/05fccec8cb63/jvirol00241-0041.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS M. H., PARK B. H. An enzyme produced by a phage-host cell system. II. The properties of the polysaccharide depolymerase. Virology. 1956 Dec;2(6):719–736. doi: 10.1016/0042-6822(56)90054-x. [DOI] [PubMed] [Google Scholar]
- BRINTON C. C., Jr, GEMSKI P., Jr, CARNAHAN J. A NEW TYPE OF BACTERIAL PILUS GENETICALLY CONTROLLED BY THE FERTILITY FACTOR OF E. COLI K 12 AND ITS ROLE IN CHROMOSOME TRANSFER. Proc Natl Acad Sci U S A. 1964 Sep;52:776–783. doi: 10.1073/pnas.52.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartell P. F., Orr T. E. Distinct slime polysaccharide depolymerases of bacteriophage-infected Pseudomonas aeruginosa: evidence of close association with the structured bacteriophage particle. J Virol. 1969 Nov;4(5):580–584. doi: 10.1128/jvi.4.5.580-584.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartell P. F., Orr T. E., Lam G. K. Polysaccharide depolymerase associated with bacteriophage infection. J Bacteriol. 1966 Jul;92(1):56–62. doi: 10.1128/jb.92.1.56-62.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartell P. F., Orr T. E., Reese J. F., Imaeda T. Interaction of Pseudomonas bacteriophage 2 with the slime polysaccharide and lipopolysaccharide of Pseudomonas aeruginosa strain B1. J Virol. 1971 Sep;8(3):311–317. doi: 10.1128/jvi.8.3.311-317.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caro L. G., Schnös M. The attachment of the male-specific bacteriophage F1 to sensitive strains of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Jul;56(1):126–132. doi: 10.1073/pnas.56.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarty A. M., Niblack J. F., Gunsalus I. C. A phage-initiated polysaccharide depolymerase in Pseudomonas putida. Virology. 1967 Jul;32(3):532–534. doi: 10.1016/0042-6822(67)90305-4. [DOI] [PubMed] [Google Scholar]
- Eklund C., Wyss O. ENZYME ASSOCIATED WITH BACTERIOPHAGE INFECTION. J Bacteriol. 1962 Dec;84(6):1209–1215. doi: 10.1128/jb.84.6.1209-1215.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOCH G., DRYER W. J. Characterization of an enzyme of phage T2 as a lysozyme. Virology. 1958 Aug;6(1):291–293. doi: 10.1016/0042-6822(58)90079-5. [DOI] [PubMed] [Google Scholar]
- Kanegasaki S., Wright A. Studies on the mechanism of phage adsorption: interaction between phage epsilon15 and its cellular receptor. Virology. 1973 Mar;52(1):160–173. doi: 10.1016/0042-6822(73)90406-6. [DOI] [PubMed] [Google Scholar]
- Kwiatkowski B., Taylor A. Two-step attachment of Vi-phage I to the bacterial surface. Acta Microbiol Pol A. 1970;2(1):13–20. [PubMed] [Google Scholar]
- MEYNELL E. W. A phage, phi chi, which attacks motile bacteria. J Gen Microbiol. 1961 Jun;25:253–290. doi: 10.1099/00221287-25-2-253. [DOI] [PubMed] [Google Scholar]
- MURPHY J. S. A phage-associated enzyme of Bacillus megaterium which destroys the bacterial cell wall. Virology. 1957 Dec;4(3):563–581. doi: 10.1016/0042-6822(57)90086-7. [DOI] [PubMed] [Google Scholar]
- PARK B. H. An enzyme produced by a phage-host cell system. I. The properties of a Klebsiella phage. Virology. 1956 Dec;2(6):711–718. doi: 10.1016/0042-6822(56)90053-8. [DOI] [PubMed] [Google Scholar]
- REITER B., ORAM J. D. GROUP N STREPTOCOCCAL PHAGE LYSIN. J Gen Microbiol. 1963 Jul;32:29–32. doi: 10.1099/00221287-32-1-29. [DOI] [PubMed] [Google Scholar]
- Sutherland I. W., Jann K., Jann B. The isolation of O-acetylated fragments from the K antigen of Escherichia coli 08:K27 (A):H by the action of phage-induced enzymes from Klebsiella aerogenes. Eur J Biochem. 1970 Feb;12(2):285–288. doi: 10.1111/j.1432-1033.1970.tb00848.x. [DOI] [PubMed] [Google Scholar]
- Sutherland I. W., Wilkinson J. F. Depolymerases for bacterial exopolysaccharides obtained from phage-infected bacteria. J Gen Microbiol. 1965 Jun;39(3):373–383. doi: 10.1099/00221287-39-3-373. [DOI] [PubMed] [Google Scholar]
- TAYLOR K., KWIATKOWSKI B. Adsorption of Vi-phage II on the Vi-receptor coated erythrocyte membranes, examined in the electron microscope. Acta Microbiol Pol. 1963;12:107–112. [PubMed] [Google Scholar]
- Takeda K., Uetake H. In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with Salmonella phage 15 . Virology. 1973 Mar;52(1):148–159. [PubMed] [Google Scholar]
- Taylor K. Enzymatic deacetylation of Vi-polysaccharide by Vi-phage. II. Biochem Biophys Res Commun. 1965 Sep 22;20(6):752–756. doi: 10.1016/0006-291x(65)90081-1. [DOI] [PubMed] [Google Scholar]