Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1975 Dec;16(6):1435–1443. doi: 10.1128/jvi.16.6.1435-1443.1975

Characterization of the mRNA of influenza virus.

S E Glass, D McGeoch, R D Barry
PMCID: PMC355752  PMID: 1202243

Abstract

The kinetics of the appearance of influenza mRNA, the distribution of mRNA between free and membrane-associated polyribosomes, its poly(A) content, and the extent to which the genome was transcribed into mRNA early in infection were determined. Polyribosomes were prepared from influenza virus-infected cells labeled for 30-min periods at various times after infection with [3H]uridine. Most of the 3H-labeled RNA extracted from these polyribosomes sedimented as a heterogeneous 8S to 20S peak in sucrose gradients, and it was largely complementary to virion RNA. By the following criteria, the complementary RNA had properties normally ascribed to mRNA: (i) it labeled rapidly with [3H]uridine; (ii) after glutaraldelyde treatment, it banded with polyribosomes in CsCl density gradients; and (iii) it contained poly(A). In chick cells at 37 C, virus mRNA was first detectable at 45 min postinfection and reached its maximal rate of appearance at 2 to 2.5 h postinfection. The free and membrane-bound polyribosomes of infected cells were separated and were found to contain the same classes of mRNA. There was no absolute segregation of mRNA sequences into either polyribosome class although each probably contained distinct ratios of the different mRNA's. From 45 min postinfection onwards, both membrane-bound and free polysomal poly(A)-containing RNA contained sequences complementary to at least 80% of the genome RNA, whereas poly(A)-minus RNA contained sequences complementary to 90 to 100% of the genome. There was no evidence for the temporal control of transcription of influenza mRNA. At 31 C, when virus development was slowed relative to 37 C,complementary RNA first appeared at 1 h postinfection. At this time, total polysomal RNA contained sequences complementary to the whole genome.

Full text

PDF
1438

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni Y., Attardi G. Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1757–1761. doi: 10.1073/pnas.68.8.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avery R. J., Dimmock N. J. Temporal control of transcription of influenza virus RNA. Virology. 1975 Apr;64(2):409–414. doi: 10.1016/0042-6822(75)90117-8. [DOI] [PubMed] [Google Scholar]
  3. Baltimore D., Huang A. S. Isopycnic separation of subcellular components from poliovirus-infected and normal HeLa cells. Science. 1968 Nov 1;162(3853):572–574. doi: 10.1126/science.162.3853.572. [DOI] [PubMed] [Google Scholar]
  4. Bean W. J., Jr, Simpson R. W. Primary transcription of the influenza virus genome in permissive cells. Virology. 1973 Dec;56(2):646–651. doi: 10.1016/0042-6822(73)90067-6. [DOI] [PubMed] [Google Scholar]
  5. Bishop D. H., Obijeski J. F., Simpson R. W. Transcription of the influenza ribonucleic acid genome by a virion polymerase. I. Optimal conditions for in vitro activity of the ribonucleic acid-dependent ribonucleic acid polymerase. J Virol. 1971 Jul;8(1):66–73. doi: 10.1128/jvi.8.1.66-73.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blobel G. Release, identification, and isolation of messenger RNA from mammalian ribosomes. Proc Natl Acad Sci U S A. 1971 Apr;68(4):832–835. doi: 10.1073/pnas.68.4.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Both G. W., Moyer S. A., Banerjee A. K. Translation and identification of the viral mRNA species isolated from subcellular fractions of vesicular stomatitis virus-infected cells. J Virol. 1975 Apr;15(4):1012–1019. doi: 10.1128/jvi.15.4.1012-1019.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chow N. L., Simpson R. W. RNA-dependent RNA polymerase activity associated with virions and subviral particles of myxoviruses. Proc Natl Acad Sci U S A. 1971 Apr;68(4):752–756. doi: 10.1073/pnas.68.4.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Compans R. W. Influenza virus proteins. II. Association with components of the cytoplasm. Virology. 1973 Jan;51(1):56–70. doi: 10.1016/0042-6822(73)90365-6. [DOI] [PubMed] [Google Scholar]
  10. Edmonds M., Caramela M. G. The isolation and characterization of adenosine monophosphate-rich polynucleotides synthesized by Ehrlich ascites cells. J Biol Chem. 1969 Mar 10;244(5):1314–1324. [PubMed] [Google Scholar]
  11. Etkind P. R., Krug R. M. Influenza viral messenger RNA. Virology. 1974 Nov;62(1):38–45. doi: 10.1016/0042-6822(74)90301-8. [DOI] [PubMed] [Google Scholar]
  12. Grubman M. J., Ehrenfeld E., Summers D. F. In vitro synthesis of proteins by membrane-bound polyribosomes from vesicular stomatitis virus-infected HeLa cells. J Virol. 1974 Sep;14(3):560–571. doi: 10.1128/jvi.14.3.560-571.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hay A. J. Studies on the formation of the influenza virus envelope. Virology. 1974 Aug;60(2):398–418. doi: 10.1016/0042-6822(74)90335-3. [DOI] [PubMed] [Google Scholar]
  14. Hulse J. L., Wettstein F. O. Two separable cytoplasmic pools of native ribosomal subunits in chick embryo tissue culture cells. Biochim Biophys Acta. 1972 May 10;269(2):265–275. doi: 10.1016/0005-2787(72)90436-4. [DOI] [PubMed] [Google Scholar]
  15. Klenk H. D., Wöllert W., Rott R., Scholtissek C. Association of influenza virus proteins with cytoplasmic fractions. Virology. 1974 Jan;57(1):28–41. doi: 10.1016/0042-6822(74)90105-6. [DOI] [PubMed] [Google Scholar]
  16. Krug R. M. Cytoplasmic and nucleoplasmic viral RNPs in influenza virus-infected MDCK cells. Virology. 1972 Oct;50(1):103–113. doi: 10.1016/0042-6822(72)90350-9. [DOI] [PubMed] [Google Scholar]
  17. Miller L., Knowland J. Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus. II. The number of ribosomal RNA genes in animals of different nucleolar types. J Mol Biol. 1970 Nov 14;53(3):329–338. doi: 10.1016/0022-2836(70)90069-0. [DOI] [PubMed] [Google Scholar]
  18. Penhoet E., Miller H., Doyle M., Blatti S. RNA-dependent RNA polymerase activity in influenza virions. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1369–1371. doi: 10.1073/pnas.68.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Penman S., Vesco C., Penman M. Localization and kinetics of formation of nuclear heterodisperse RNA, cytoplasmic heterodisperse RNA and polyribosome-associated messenger RNA in HeLa cells. J Mol Biol. 1968 May 28;34(1):49–60. doi: 10.1016/0022-2836(68)90234-9. [DOI] [PubMed] [Google Scholar]
  20. Perry R. P., Kelley D. E. Messenger RNA-protein complexes and newly synthesized ribosomal subunits: analysis of free particles and components of polyribosomes. J Mol Biol. 1968 Jul 14;35(1):37–59. doi: 10.1016/s0022-2836(68)80035-x. [DOI] [PubMed] [Google Scholar]
  21. Pons M. W. Isolation of influenza virus ribonucleoprotein from infected cells. Demonstration of the presence of negative-stranded RNA in viral RNP. Virology. 1971 Oct;46(1):149–160. doi: 10.1016/0042-6822(71)90014-6. [DOI] [PubMed] [Google Scholar]
  22. Scholtissek C., Rott R. Synthesis in vivo of influenza virus plus and minus strand RNA and its preferential inhibition by antibiotics. Virology. 1970 Apr;40(4):989–996. doi: 10.1016/0042-6822(70)90145-5. [DOI] [PubMed] [Google Scholar]
  23. Shafritz D. A. Evidence for nontranslated messenger fibonucleic acid in membrane-bound and free polysomes of rabbit liver. J Biol Chem. 1974 Jan 10;249(1):89–93. [PubMed] [Google Scholar]
  24. Siegert W., Bauer G., Hofschneider P. H. Direct evidence for messenger activity of influenza virion RNA. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2960–2963. doi: 10.1073/pnas.70.10.2960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Skehel J. J. Early polypeptide synthesis in influenza virus-infected cells. Virology. 1973 Nov;56(1):394–399. doi: 10.1016/0042-6822(73)90320-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES