Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1972 Apr;9(4):594–601. doi: 10.1128/jvi.9.4.594-601.1972

Dominance Relationships in Mixedly Infected Bacillus subtilis

Sandra Palefski 1,2, H Ernest Hemphill 1,2, P E Kolenbrander 1,2, H R Whiteley 1,2
PMCID: PMC356343  PMID: 4623223

Abstract

The progeny released from Bacillus subtilis cells mixedly infected with bacteriophages β22, SP82, and SP02c1 have been studied at varying multiplicities of infection and orders of addition and with different host strains of the bacterium. In B. subtilis 168, SP02c1 was subordinate to both SP82 and β22 and did not yield significant numbers of progeny even when added 5 min before the superior phage. Dominance in mixed infections of β22 and SP82 was host-dependent. In B. subtilis 168, SP82 was dominant and greatly reduced the yield of β22 if added simultaneously or before the subordinate partner. However, in the same mixed infection in B. subtilis SB11, β22 was the dominant phage and totally suppressed the production of SP82 even when added 5 min after the latter.

Full text

PDF
601

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. W., Williamson J. R., Eigner J. Localization of parental deoxyribonucleic acid from superinfecting T4 bacteriophage in Escherichia coli. J Virol. 1971 Dec;8(6):887–893. doi: 10.1128/jvi.8.6.887-893.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DULBECCO R. Mutual exclusion between related phages. J Bacteriol. 1952 Feb;63(2):209–217. doi: 10.1128/jb.63.2.209-217.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delbrück M. Interference Between Bacterial Viruses: III. The Mutual Exclusion Effect and the Depressor Effect. J Bacteriol. 1945 Aug;50(2):151–170. [PMC free article] [PubMed] [Google Scholar]
  4. FRENCH R. C., LESLEY S. M., GRAHAM A. F., van ROOYEN C. E. Studies on the relationship between virus and host cell. III. The breakdown of P32 labelled T2r+ bacteriophage adsorbed to E. coli previously infected by other coliphages of the T group. Can J Med Sci. 1951 Jun;29(3):144–148. [PubMed] [Google Scholar]
  5. GREEN D. M. INFECTIVITY OF DNA ISOLATED FROM BACILLUS SUBTILIS BACTERIOPHAGE, SP82. J Mol Biol. 1964 Dec;10:438–451. doi: 10.1016/s0022-2836(64)80065-6. [DOI] [PubMed] [Google Scholar]
  6. Hemphill H. E., Whiteley H. R., Brown L. R., Doi R. H. The effect of rifampin on the production of beta22 phage by Bacillus subtilis. Biochem Biophys Res Commun. 1969 Nov 6;37(4):559–566. doi: 10.1016/0006-291x(69)90845-6. [DOI] [PubMed] [Google Scholar]
  7. Hemphill H. E., Whiteley H. R. Nucleic acid synthesis in Bacillus subtilis infected with bacteriophage beta-22. J Virol. 1970 Oct;6(4):381–392. doi: 10.1128/jvi.6.4.381-392.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kahan E. A genetic study of temperature-sensitive mutants of the subtilis phage SP82. Virology. 1966 Dec;30(4):650–660. doi: 10.1016/0042-6822(66)90170-x. [DOI] [PubMed] [Google Scholar]
  9. McAllister W. T. Bacteriophage infection: which end of the SP82G genome goes in first? J Virol. 1970 Feb;5(2):194–198. doi: 10.1128/jvi.5.2.194-198.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nishihara M., Chrambach A., Aposhian H. V. The deoxycytidylate deaminase found in Bacillus subtilis infected with phage SP8. Biochemistry. 1967 Jul;6(7):1877–1886. doi: 10.1021/bi00859a001. [DOI] [PubMed] [Google Scholar]
  11. Nishihara M., Friedman N., Vasken Aposhian H. Biological activity of 5-hydroxymethyluracil and its deoxynucleoside in noninfected and phage-infected Bacillus subtilis. J Virol. 1969 Feb;3(2):164–170. doi: 10.1128/jvi.3.2.164-170.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Okubo S., Romig W. R. Comparison of ultraviolet sensitivity of Bacillus subtilis bacteriophage SPO2 and its infectious DNA. J Mol Biol. 1965 Nov;14(1):130–142. doi: 10.1016/s0022-2836(65)80235-2. [DOI] [PubMed] [Google Scholar]
  13. Roscoe D. H. Synthesis of DNA in phage-infected Bacillus subtilis. Virology. 1969 Aug;38(4):527–537. doi: 10.1016/0042-6822(69)90173-1. [DOI] [PubMed] [Google Scholar]
  14. Snustad D. P. Limited genome expression in bacteriophage T4-infected Escherichia coli. I. Demonstration of the effect. Genetics. 1966 Oct;54(4):923–935. doi: 10.1093/genetics/54.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Snustad D. P. Limited genome expression in bacteriophage T4-infected Escherichia coli. II. Development and examination of a model. Genetics. 1966 Oct;54(4):937–954. doi: 10.1093/genetics/54.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. VISCONTI N. Resistance to lysis from without in bacteria infected with T2 bacteriophage. J Bacteriol. 1953 Sep;66(3):247–253. doi: 10.1128/jb.66.3.247-253.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WEIGLE J. J., DELBRUCK M. Mutual exclusion between an infecting phage and a carried phage. J Bacteriol. 1951 Sep;62(3):301–318. doi: 10.1128/jb.62.3.301-318.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yehle C. O., Doi R. H. Differential expression of bacteriophage genomes in vegetative and sporulating cells of Bacillus subtilis. J Virol. 1967 Oct;1(5):935–947. doi: 10.1128/jvi.1.5.935-947.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yelton D. B., Thorne C. B. Comparison of Bacillus cereus bacteriophages CP-51 and CP-53. J Virol. 1971 Aug;8(2):242–253. doi: 10.1128/jvi.8.2.242-253.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Young F. E. Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2377–2384. doi: 10.1073/pnas.58.6.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES