Abstract
After the incubation of reovirus replicase reaction mixtures (containing labeled ribonucleoside triphosphates), partially double-stranded ribonucleic acid (pdsRNA) products were isolated by cellulose column chromatography followed by precipitation with 2 m NaCl. The pulse-labeled reaction product contained a significantly large amount of pdsRNA that became complete dsRNA as reaction time increased, indicating that pdsRNA was an intermediate of the replicase reaction. The newly synthesized RNA strand (3H-labeled) of the pdsRNA was resistant to ribonuclease digestion, suggesting that single-stranded RNA regions were part of a preexistent unlabeled RNA template. These observations, together with the electrophoretic behavior of the pdsRNA in polyacrylamide gel, are consistent with the hypothesis that dsRNA is synthesized by the elongation of a complementary RNA strand upon a preexistent template of single-stranded RNA (i.e., messenger RNA). The direction of the RNA strand elongation was determined by carrying out the replicase reaction in the presence of 3H-cytidine triphosphate (or 3H-uridine triphosphate) and adenine triphosphate-α-32P followed by a chase with excess unlabeled cytidine triphosphate (or uridine triphosphate). The dsRNA product was digested with T1 ribonuclease and the resulting 3′-terminal fragments were isolated by chromatography on a dihydroxyboryl derivative of cellulose. Examination of the ratio of 3H to 32P in these fragments indicated that RNA synthesis proceeded from the 5′ to 3′ terminus.
Full text
PDF![628](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/2d2e3137b13b/jvirol00274-0074.png)
![629](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/fb3adbbc1006/jvirol00274-0075.png)
![630](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/105b975aa76e/jvirol00274-0076.png)
![631](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/5e8725ffdc18/jvirol00274-0077.png)
![632](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/242e6725d8a0/jvirol00274-0078.png)
![633](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/cfa1f4c7f9f1/jvirol00274-0079.png)
![634](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/4bd60c568697/jvirol00274-0080.png)
![635](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/bfd2e7bf546b/jvirol00274-0081.png)
![636](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/9e367cd62726/jvirol00274-0082.png)
![637](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/ca5772da5a9e/jvirol00274-0083.png)
![638](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de5/356513/6b92f704ca4a/jvirol00274-0084.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acs G., Klett H., Schonberg M., Christman J., Levin D. H., Silverstein S. C. Mechanism of reovirus double-stranded ribonucleic acid synthesis in vivo and in vitro. J Virol. 1971 Nov;8(5):684–689. doi: 10.1128/jvi.8.5.684-689.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop D. H., Claybrook J. R., Pace N. R., Spiegelman S. An analysis by gel electrophoresis of Q-beta-RNA complexes formed during the latent period of an in vitro synthesis. Proc Natl Acad Sci U S A. 1967 May;57(5):1474–1481. doi: 10.1073/pnas.57.5.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin R. M. Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1504–1511. doi: 10.1073/pnas.55.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilham P. T., Rosenberg M. The isolation of 3'-terminal polynucleotides from RNA molecules. Biochim Biophys Acta. 1971 Aug 26;246(2):337–340. doi: 10.1016/0005-2787(71)90143-2. [DOI] [PubMed] [Google Scholar]
- Nonoyama M., Watanabe Y., Graham A. F. Defective virions of reovirus. J Virol. 1970 Aug;6(2):226–236. doi: 10.1128/jvi.6.2.226-236.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakuma S., Watanabe Y. Unilateral synthesis of reovirus double-stranded ribonucleic acid by a cell-free replicase system. J Virol. 1971 Aug;8(2):190–196. doi: 10.1128/jvi.8.2.190-196.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shatkin A. J., Sipe J. D., Loh P. Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. J Virol. 1968 Oct;2(10):986–991. doi: 10.1128/jvi.2.10.986-991.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe Y., Gauntt C. J., Graham A. F. Reovirus-induced ribonucleic acid polymerase. J Virol. 1968 Sep;2(9):869–877. doi: 10.1128/jvi.2.9.869-877.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe Y., Graham A. F. Structural units of reovirus ribonucleic acid and their possible functional significance. J Virol. 1967 Aug;1(4):665–677. doi: 10.1128/jvi.1.4.665-677.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe Y., Millward S., Graham A. F. Regulation of transcription of the Reovirus genome. J Mol Biol. 1968 Aug 28;36(1):107–123. doi: 10.1016/0022-2836(68)90223-4. [DOI] [PubMed] [Google Scholar]
- Watanabe Y., Prevec L., Graham A. F. Specificity in transcription of the reovirus genome. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1040–1046. doi: 10.1073/pnas.58.3.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weith H. L., Wiebers J. L., Gilham P. T. Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochemistry. 1970 Oct 27;9(22):4396–4401. doi: 10.1021/bi00824a021. [DOI] [PubMed] [Google Scholar]