Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o155–o156. doi: 10.1107/S1600536812051276

3-Benzyl-4-ethyl-1H-1,2,4-triazole-5(4H)-thione

Zbigniew Karczmarzyk a,*, Monika Pitucha b, Waldemar Wysocki a, Anna Pachuta-Stec b, Andrzej Stańczuk a
PMCID: PMC3569223  PMID: 23424446

Abstract

The title compound, C11H13N3S, exists in the 5-thioxo tautomeric form. The benzene ring exhibits disorder with a refined ratio of 0.77 (2):0.23 (2) for components A and B with a common bridgehead C atom. The 1,2,4-triazole ring is essentially planar, with a maximum deviation of 0.002 (3) Å for the benzyl-substituted C atom, and forms dihedral angles of 88.94 (18) and 86.56 (49)° with the benzene rings of components A and B, respectively. The angle between the plane of the ethyl chain and the mean plane of 1,2,4-triazole ring is 88.55 (15)° and this conformation is stabilized by an intra­molecular C—H⋯S contact. In the crystal, pairs of N—H⋯S hydrogen bonds link mol­ecules into inversion dimers. π–π inter­actions are observed between the triazole and benzene rings, with centroid–centroid separations of 3.547 (4) and 3.544 (12) Å for components A and B, and slippages of 0.49 (6) and 0.58 (15) Å, respectively.

Related literature  

For background information on 1,2,4-triazole-5-thio­nes, see: Saadeh et al. (2010); Akhtar et al. (2008); Al-Omar et al. (2010). For their biological activity, see: Pitucha et al. (2010). For the synthesis, see: Dobosz & Pachuta-Stec (1996). For related structures, see: Karczmarzyk et al. (2012); Kruszynski et al. (2007); Siwek et al. (2008). For graph-set motifs, see Bernstein et al. (1995).graphic file with name e-69-0o155-scheme1.jpg

Experimental  

Crystal data  

  • C11H13N3S

  • M r = 219.30

  • Monoclinic, Inline graphic

  • a = 7.3731 (5) Å

  • b = 8.9408 (19) Å

  • c = 16.9936 (8) Å

  • β = 91.892 (4)°

  • V = 1119.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.55 × 0.20 × 0.20 mm

Data collection  

  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.834, T max = 0.852

  • 3392 measured reflections

  • 3289 independent reflections

  • 1385 reflections with I > 2σ(I)

  • R int = 0.039

  • 2 standard reflections every 100 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.156

  • S = 0.98

  • 3289 reflections

  • 187 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: KM4B8 (Gałdecki et al., 1996); cell refinement: KM4B8; data reduction: DATAPROC (Gałdecki et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051276/fy2077sup1.cif

e-69-0o155-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051276/fy2077Isup2.hkl

e-69-0o155-Isup2.hkl (158.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051276/fy2077Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯S6 0.97 2.85 3.204 (3) 103
N1—H1⋯S6i 0.86 (3) 2.46 (3) 3.303 (3) 167 (3)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The 1,2,4-triazole-5-thiones were found to have significant antimicrobial action (Saadeh et al., 2010; Akhtar et al., 2008; Al-Omar et al., 2010). The title compound, (I), belongs to 3- and 4-substituted derivatives of 1,2,4-triazole-5-thiones with potential antituberculosis activity against mycobacterium strains of Mycobacterium smegmatis, Mycobacterium phlei and Mycobacterium H37Ra (Pitucha et al., 2010).

The X-ray analysis of the title compound revealed that this compound exists as the 5-thioxo tautomer in the crystalline state. The molecular geometry of (I) is very similar to that observed in the related structures of ethyl 2-(3-methyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-4-yl)acetate (Karczmarzyk et al., 2012), 2-(3-methyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-4-yl)acetic acid (Kruszynski et al., 2007) and 4-[3-(2-methyl-furan-3-yl)-5-thioxo-1,2,4-triazol-4-yl]acetic acid (Siwek et al., 2008). The 1,2,4-triazole ring is planar to within 0.002 (3) Å. The benzene ring exhibits disorder giving two components A and B with a common bridgehead C atom. The benzyl group adopts a cis-gauche conformation in respect to 1,2,4-triazole ring with the torsion angles N2—C3—C9—C10 and C3—C9—C10—C11A for benzene ring A and C3—C9—C10—C11B for benzene ring B of 25.1 (5), -102.9 (9) and -105 (4)°, respectively. The plane of the ethyl chain is positioned almost perpendicular to the mean plane of the 1,2,4-triazole ring with the dihedral angle of 88.55 (15)°. This conformation is stabilized by the C7—H71···S6 intramolecular hydrogen bond specified as S(5) in graph set notation (Bernstein et al., 1995).

In the crystal structure (Fig. 2), inversion-related molecules of (I) form molecular dimers designated as R22(8) rings via N1—H1···S6 intermolecular hydrogen bonds. Moreover, the π-electron systems of the pairs of triazole and benzene rings belonging to the molecules related by 21 axis overlap each other, with centroid-to-centroid separation of 3.547 (4) Å for ring A and 3.544 (12) Å for ring B between the triazole ring at (x, y, z) and benzene rings at (-x, y+1/2, -z+1/2) and benzene rings at (x, y, z) and triazole ring at (-x, y-1/2, -z+1/2). The angle between overlapping planes is 6.6 (3)° for A and 5.0 (10)° for B and the slippage is 0.490 (58) and 0.575 (147) Å for rings A and B, respectively.

Experimental

The title compound, (I), was prepared by the cyclization reaction of 1-benzyl-4-ethylthiosemicarbazide in alkaline medium according to the metod described by Dobosz & Pachuta-Stec (1996). Crystals uitable for X-ray diffraction analysis were grown by slow evaporation of ethanol solution.

Refinement

The benzene ring exhibits disorder with the refined ratio of 0.77 (2):0.23 (2) for the two components A and B with common bridgehead C atom. DFIX restraints (SHELXL97; Sheldrick, 2008) with a target value of 1.380 (5) Å were used for all C≐C bonds in component B. The N-bound H atom was located by difference Fourier synthesis and refined freely. The remaining H atoms were positioned geometrically and treated as riding on their C atoms with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH2) and 0.97 Å (CH3). All H atoms were assigned Uiso(H) values of 1.5Ueq(N,C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A view of the molecular packing in (I).

Crystal data

C11H13N3S F(000) = 464
Mr = 219.30 Dx = 1.301 Mg m3
Monoclinic, P21/c Melting point: 425 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.3731 (5) Å Cell parameters from 67 reflections
b = 8.9408 (19) Å θ = 3.6–11.2°
c = 16.9936 (8) Å µ = 0.26 mm1
β = 91.892 (4)° T = 296 K
V = 1119.6 (3) Å3 Prism, colourless
Z = 4 0.55 × 0.20 × 0.20 mm

Data collection

Kuma KM-4 four-circle diffractometer 1385 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.039
Graphite monochromator θmax = 30.1°, θmin = 2.4°
ω–2θ scans h = −10→10
Absorption correction: ψ scan (North et al., 1968) k = 0→12
Tmin = 0.834, Tmax = 0.852 l = 0→23
3392 measured reflections 2 standard reflections every 100 reflections
3289 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.062P)2 + 0.2203P] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
3289 reflections Δρmax = 0.23 e Å3
187 parameters Δρmin = −0.20 e Å3
6 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.012 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S6 −0.22230 (10) 0.33538 (8) 0.53097 (4) 0.0567 (3)
N1 0.0496 (3) 0.3323 (3) 0.42647 (13) 0.0473 (6)
H1 0.101 (4) 0.412 (4) 0.4446 (18) 0.071*
N2 0.1063 (3) 0.2595 (3) 0.36067 (13) 0.0525 (6)
N4 −0.1519 (3) 0.1693 (2) 0.40086 (12) 0.0445 (5)
C3 −0.0184 (4) 0.1613 (3) 0.34683 (16) 0.0516 (7)
C5 −0.1070 (3) 0.2807 (3) 0.45287 (15) 0.0412 (6)
C7 −0.3151 (4) 0.0780 (3) 0.40482 (17) 0.0563 (8)
H7A −0.3527 0.0466 0.3521 0.084*
H7B −0.4122 0.1375 0.4259 0.084*
C8 −0.2841 (5) −0.0576 (4) 0.4557 (2) 0.0776 (11)
H8A −0.2561 −0.0268 0.5088 0.116*
H8B −0.1847 −0.1146 0.4362 0.116*
H8C −0.3917 −0.1182 0.4545 0.116*
C9 −0.0260 (4) 0.0531 (4) 0.2795 (2) 0.0834 (12)
H91 −0.1034 0.0942 0.2376 0.125*
H92 −0.0813 −0.0391 0.2969 0.125*
C10 0.1561 (3) 0.0173 (3) 0.24685 (16) 0.0456 (6)
C11A 0.1986 (18) 0.0849 (15) 0.1776 (6) 0.0499 (18) 0.77 (2)
H11A 0.1175 0.1531 0.1547 0.075* 0.77 (2)
C12A 0.3582 (15) 0.0546 (11) 0.1410 (6) 0.062 (2) 0.77 (2)
H12A 0.3837 0.1027 0.0941 0.093* 0.77 (2)
C13A 0.4806 (9) −0.0468 (11) 0.1733 (7) 0.066 (2) 0.77 (2)
H13A 0.5890 −0.0673 0.1490 0.100* 0.77 (2)
C14A 0.4388 (12) −0.1159 (11) 0.2417 (7) 0.071 (3) 0.77 (2)
H14A 0.5179 −0.1870 0.2633 0.107* 0.77 (2)
C15A 0.2833 (14) −0.0828 (10) 0.2790 (5) 0.068 (2) 0.77 (2)
H15A 0.2613 −0.1279 0.3270 0.102* 0.77 (2)
C11B 0.240 (5) 0.060 (6) 0.179 (2) 0.069 (11) 0.23 (2)
H11B 0.1873 0.1316 0.1463 0.103* 0.23 (2)
C12B 0.403 (3) −0.004 (4) 0.1598 (16) 0.052 (8) 0.23 (2)
H12B 0.4608 0.0185 0.1134 0.077* 0.23 (2)
C13B 0.475 (3) −0.104 (4) 0.214 (2) 0.074 (12) 0.23 (2)
H13B 0.5909 −0.1414 0.2053 0.112* 0.23 (2)
C14B 0.391 (3) −0.154 (3) 0.280 (2) 0.072 (7) 0.23 (2)
H14B 0.4437 −0.2272 0.3126 0.108* 0.23 (2)
C15B 0.225 (3) −0.093 (3) 0.2963 (16) 0.053 (6) 0.23 (2)
H15B 0.1608 −0.1244 0.3395 0.079* 0.23 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S6 0.0669 (5) 0.0494 (4) 0.0553 (4) −0.0142 (4) 0.0264 (3) −0.0107 (4)
N1 0.0485 (13) 0.0404 (12) 0.0538 (13) −0.0110 (11) 0.0150 (10) −0.0100 (11)
N2 0.0480 (13) 0.0527 (13) 0.0577 (15) −0.0092 (11) 0.0180 (11) −0.0129 (12)
N4 0.0407 (11) 0.0443 (12) 0.0491 (12) −0.0089 (10) 0.0113 (9) −0.0094 (11)
C3 0.0438 (14) 0.0560 (16) 0.0558 (16) −0.0092 (14) 0.0160 (12) −0.0166 (14)
C5 0.0429 (14) 0.0345 (12) 0.0465 (15) −0.0038 (11) 0.0069 (11) 0.0005 (11)
C7 0.0447 (15) 0.0585 (18) 0.0665 (19) −0.0148 (14) 0.0138 (13) −0.0140 (15)
C8 0.080 (2) 0.0522 (18) 0.102 (3) −0.0176 (17) 0.031 (2) −0.0055 (18)
C9 0.0629 (19) 0.101 (3) 0.089 (2) −0.0244 (19) 0.0288 (17) −0.054 (2)
C10 0.0451 (15) 0.0458 (15) 0.0465 (15) −0.0063 (12) 0.0078 (12) −0.0113 (13)
C11A 0.052 (4) 0.043 (4) 0.055 (4) 0.004 (3) 0.006 (3) −0.004 (2)
C12A 0.062 (5) 0.063 (5) 0.062 (4) 0.001 (3) 0.024 (3) −0.004 (3)
C13A 0.043 (4) 0.077 (5) 0.080 (5) 0.008 (3) 0.014 (4) −0.027 (4)
C14A 0.063 (6) 0.063 (5) 0.087 (8) 0.018 (4) −0.015 (5) 0.002 (4)
C15A 0.091 (6) 0.063 (4) 0.050 (4) −0.020 (5) −0.003 (4) 0.007 (3)
C11B 0.054 (19) 0.06 (2) 0.09 (2) 0.006 (12) −0.022 (13) −0.003 (13)
C12B 0.032 (14) 0.07 (2) 0.052 (16) −0.003 (12) 0.015 (12) −0.019 (14)
C13B 0.051 (12) 0.10 (2) 0.07 (2) −0.041 (13) 0.029 (13) −0.041 (18)
C14B 0.074 (15) 0.049 (11) 0.094 (19) 0.016 (10) −0.004 (13) 0.003 (11)
C15B 0.033 (10) 0.059 (12) 0.067 (15) 0.008 (9) 0.003 (7) 0.008 (8)

Geometric parameters (Å, º)

S6—C5 1.673 (3) C10—C11B 1.379 (5)
N1—C5 1.335 (3) C10—C15A 1.394 (7)
N1—N2 1.371 (3) C11A—C12A 1.376 (9)
N1—H1 0.86 (3) C11A—H11A 0.9300
N2—C3 1.288 (3) C12A—C13A 1.381 (10)
N4—C5 1.365 (3) C12A—H12A 0.9300
N4—C3 1.370 (3) C13A—C14A 1.360 (11)
N4—C7 1.457 (3) C13A—H13A 0.9300
C3—C9 1.498 (4) C14A—C15A 1.361 (9)
C7—C8 1.502 (4) C14A—H14A 0.9300
C7—H7A 0.9700 C15A—H15A 0.9300
C7—H7B 0.9700 C11B—C12B 1.380 (5)
C8—H8A 0.9600 C11B—H11B 0.9300
C8—H8B 0.9600 C12B—C13B 1.379 (5)
C8—H8C 0.9600 C12B—H12B 0.9300
C9—C10 1.504 (4) C13B—C14B 1.377 (5)
C9—H91 0.9700 C13B—H13B 0.9300
C9—H92 0.9700 C14B—C15B 1.379 (5)
C10—C11A 1.369 (6) C14B—H14B 0.9300
C10—C15B 1.379 (5) C15B—H15B 0.9300
C5—N1—N2 113.6 (2) C15B—C10—C9 103.9 (10)
C5—N1—H1 123 (2) C11B—C10—C9 133.0 (12)
N2—N1—H1 123 (2) C15A—C10—C9 126.1 (5)
C3—N2—N1 103.7 (2) C10—C11A—C12A 121.7 (8)
C5—N4—C3 107.9 (2) C10—C11A—H11A 119.2
C5—N4—C7 124.2 (2) C12A—C11A—H11A 119.2
C3—N4—C7 127.9 (2) C11A—C12A—C13A 120.5 (9)
N2—C3—N4 111.5 (2) C11A—C12A—H12A 119.8
N2—C3—C9 126.0 (2) C13A—C12A—H12A 119.8
N4—C3—C9 122.4 (2) C14A—C13A—C12A 118.3 (8)
N1—C5—N4 103.2 (2) C14A—C13A—H13A 120.8
N1—C5—S6 129.3 (2) C12A—C13A—H13A 120.8
N4—C5—S6 127.47 (18) C13A—C14A—C15A 121.1 (7)
N4—C7—C8 111.6 (2) C13A—C14A—H14A 119.4
N4—C7—H7A 109.3 C15A—C14A—H14A 119.4
C8—C7—H7A 109.3 C14A—C15A—C10 121.6 (5)
N4—C7—H7B 109.3 C14A—C15A—H15A 119.2
C8—C7—H7B 109.3 C10—C15A—H15A 119.2
H7A—C7—H7B 108.0 C10—C11B—C12B 120.3 (17)
C7—C8—H8A 109.5 C10—C11B—H11B 119.8
C7—C8—H8B 109.5 C12B—C11B—H11B 119.8
H8A—C8—H8B 109.5 C13B—C12B—C11B 115 (2)
C7—C8—H8C 109.5 C13B—C12B—H12B 122.3
H8A—C8—H8C 109.5 C11B—C12B—H12B 122.3
H8B—C8—H8C 109.5 C14B—C13B—C12B 126 (2)
C3—C9—C10 114.1 (3) C14B—C13B—H13B 117.2
C3—C9—H91 108.7 C12B—C13B—H13B 117.2
C10—C9—H91 108.7 C13B—C14B—C15B 117 (2)
C3—C9—H92 108.7 C13B—C14B—H14B 121.3
C10—C9—H92 108.7 C15B—C14B—H14B 121.3
H91—C9—H92 107.6 C14B—C15B—C10 118.3 (15)
C15B—C10—C11B 122.5 (12) C14B—C15B—H15B 120.8
C11A—C10—C15A 116.8 (5) C10—C15B—H15B 120.8
C11A—C10—C9 117.1 (5)
C5—N1—N2—C3 −0.1 (3) C3—C9—C10—C11B −105 (4)
N1—N2—C3—N4 0.3 (3) C3—C9—C10—C15A 79.6 (7)
N1—N2—C3—C9 178.3 (3) C15A—C10—C11A—C12A 0.7 (18)
C5—N4—C3—N2 −0.3 (3) C9—C10—C11A—C12A −177.0 (11)
C7—N4—C3—N2 179.7 (3) C10—C11A—C12A—C13A 0 (2)
C5—N4—C3—C9 −178.5 (3) C11A—C12A—C13A—C14A 0.4 (17)
C7—N4—C3—C9 1.6 (5) C12A—C13A—C14A—C15A −2.2 (16)
N2—N1—C5—N4 −0.1 (3) C13A—C14A—C15A—C10 3.3 (16)
N2—N1—C5—S6 179.3 (2) C11A—C10—C15A—C14A −2.5 (14)
C3—N4—C5—N1 0.2 (3) C9—C10—C15A—C14A 175.0 (7)
C7—N4—C5—N1 −179.8 (2) C15B—C10—C11B—C12B −2 (7)
C3—N4—C5—S6 −179.2 (2) C9—C10—C11B—C12B −173 (3)
C7—N4—C5—S6 0.8 (4) C10—C11B—C12B—C13B −3 (7)
C5—N4—C7—C8 −88.5 (3) C11B—C12B—C13B—C14B 7 (5)
C3—N4—C7—C8 91.4 (3) C12B—C13B—C14B—C15B −4 (5)
N2—C3—C9—C10 25.1 (5) C13B—C14B—C15B—C10 −2 (5)
N4—C3—C9—C10 −157.0 (3) C11B—C10—C15B—C14B 5 (5)
C3—C9—C10—C11A −102.9 (9) C9—C10—C15B—C14B 178 (3)
C3—C9—C10—C15B 83.1 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7B···S6 0.97 2.85 3.204 (3) 103
N1—H1···S6i 0.86 (3) 2.46 (3) 3.303 (3) 167 (3)

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2077).

References

  1. Akhtar, T., Hameede, S., Khan, K. M. & Choudhary, M. I. (2008). Med. Chem. 4, 539–543. [DOI] [PubMed]
  2. Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Dobosz, M. & Pachuta-Stec, A. (1996). Acta Pol. Pharm. 53, 123–131.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8 Kuma Diffraction, Wrocław, Poland.
  7. Gałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC Kuma Diffraction, Wrocław, Poland.
  8. Karczmarzyk, Z., Pitucha, M., Wysocki, W., Fruziński, A. & Olender, E. (2012). Acta Cryst. E68, o3264–o3265. [DOI] [PMC free article] [PubMed]
  9. Kruszynski, R., Trzesowska, A., Przybycin, M., Gil, K. & Dobosz, M. (2007). Acta Cryst. E63, o4378.
  10. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  11. Pitucha, M., Polak, B., Swatko-Ossor, M., Popiołek, Ł. & Ginalska, G. (2010). Croat. Chem. Acta, 83, 299–306.
  12. Saadeh, H. A., Mosleh, I. M., Al-Bakri, A. G. & Mubarak, M. I. (2010). Monatsh. Chem. 141, 471–478.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Siwek, A., Wujec, M., Wawrzycka-Gorczyca, I., Dobosz, M. & Paneth, P. (2008). Heteroat. Chem. 19, 337–344.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051276/fy2077sup1.cif

e-69-0o155-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051276/fy2077Isup2.hkl

e-69-0o155-Isup2.hkl (158.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051276/fy2077Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES