Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954

MODE OF ACTION OF CHLORAMPHENICOL I.

Action of Chloramphenicol on Assimilation of Ammonia and on Synthesis of Proteins and Nucleic Acids in Escherichia coli

C L Wisseman Jr 1, J E Smadel 1, F E Hahn 1, H E Hopps 1
PMCID: PMC357302  PMID: 13174493

Full text

PDF
663

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNUM C. P., NASH C. W. The separation of pentose and desoxypentose nucleic acids from isolated mouse liver cell nuclei. Arch Biochem. 1950 Feb;25(2):376–383. [PubMed] [Google Scholar]
  2. BERGMANN E. D., SICHER S. Mode of action of chloramphenicol. Nature. 1952 Nov 29;170(4335):931–932. doi: 10.1038/170931a0. [DOI] [PubMed] [Google Scholar]
  3. BERNHEIM F., DeTURK W. E. The effect of chloramphenicol and certain other drugs on the oxidation of aromatic amino acids by a strain of Pseudomonas aeruginosa. J Pharmacol Exp Ther. 1952 Jun;105(2):246–251. [PubMed] [Google Scholar]
  4. BORSOOK H. Protein turnover and incorporation of labeled amino acids into tissue proteins in vivo and in vitro. Physiol Rev. 1950 Apr;30(2):206–219. doi: 10.1152/physrev.1950.30.2.206. [DOI] [PubMed] [Google Scholar]
  5. BUCHANAN J. M., WILSON D. W. Biosynthesis of purines and pyrimidines. Fed Proc. 1953 Jun;12(2):646–650. [PubMed] [Google Scholar]
  6. CAMPBELL P. N., WORK T. S. Biosynthesis of proteins. Nature. 1953 Jun 6;171(4362):997–1001. doi: 10.1038/171997a0. [DOI] [PubMed] [Google Scholar]
  7. COLLINS R. J., ELLIS B., HANSEN S. B., MACKENZIE H. S., MOUALIM R. J., PETROW V., STEPHENSON O., STURGEON B. Some observations on the structural requirements for antibiotic activity in the chloramphenicol series. Part II. J Pharm Pharmacol. 1952 Oct;4(10):693–710. doi: 10.1111/j.2042-7158.1952.tb13204.x. [DOI] [PubMed] [Google Scholar]
  8. Conway E. J., Byrne A. An absorption apparatus for the micro-determination of certain volatile substances: The micro-determination of ammonia. Biochem J. 1933;27(2):419–429. [PMC free article] [PubMed] [Google Scholar]
  9. DOUNCE A. L. [Duplicating mechanism for peptide chain and nucleic acid synthesis]. Enzymologia. 1952 Sep 1;15(5):251–258. [PubMed] [Google Scholar]
  10. GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HAHN F. E., WISSEMAN C. L., Jr, HOPPS H. E. Mode of action of chloramphenicol, II. Inhibition of bacterial D-polypeptide formation by an L-stereoisomer of chloramphenicol. J Bacteriol. 1954 Jun;67(6):674–679. doi: 10.1128/jb.67.6.674-679.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HAHN F. E., WISSEMAN C. L., Jr Inhibition of adaptive enzyme formation by antimicrobial agents. Proc Soc Exp Biol Med. 1951 Mar;76(3):533–535. doi: 10.3181/00379727-76-18546. [DOI] [PubMed] [Google Scholar]
  13. LIPMANN F. Mechanism of peptide bond formation. Fed Proc. 1949 Sep;8(3):597–602. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MELCHIOR J. B., KLIOZE O., KLOTZ I. M. Further studies of the synthesis of protein by Escherichia coli. J Biol Chem. 1951 Mar;189(1):411–420. [PubMed] [Google Scholar]
  16. MITCHELL P. Spectrophotometric estimation of nucleic acid in bacterial suspensions. J Gen Microbiol. 1950 Sep;4(3):399–409. doi: 10.1099/00221287-4-3-399. [DOI] [PubMed] [Google Scholar]
  17. MOLHO D., MOLHO-LACROIX L. Etude comparée de l'antagonisme entre quelques dérivés de la phénylalanine et la chloromycétine, la beta 2 thiénylalanine et la beta phénylsérine. Bull Soc Chim Biol (Paris) 1952 Jan-Feb;34(1-2):99–107. [PubMed] [Google Scholar]
  18. MOORE S., STEIN W. H. Chromatography of amino acids on sulfonated polystyrene resins. J Biol Chem. 1951 Oct;192(2):663–681. [PubMed] [Google Scholar]
  19. PETERS T., Jr, ANFINSEN C. B. Net production of serum albumin by liver slices. J Biol Chem. 1950 Oct;186(2):805–813. [PubMed] [Google Scholar]
  20. RACKER E. Enzymatic synthesis and breakdown of desoxyribose phosphate. J Biol Chem. 1952 May;196(1):347–365. [PubMed] [Google Scholar]
  21. TRUHAUT R., LAMBIN S., BOYER M. Contribution à l'étude du mécanisme d'action de la chloromycétine vis-à-vis d'Eberthella typhi; rôle du tryptophane. Bull Soc Chim Biol (Paris) 1951;33(3-4):387–393. [PubMed] [Google Scholar]
  22. WEED L. L., WILSON D. W. The incorporation of C14-orotic acid into nucleic acid pyrimidines in vitro. J Biol Chem. 1951 Mar;189(1):435–442. [PubMed] [Google Scholar]
  23. WOOLLEY D. W. A study of non-competitive antagonism with chloromycetin and related analogues of phenylalanine. J Biol Chem. 1950 Jul;185(1):293–305. [PubMed] [Google Scholar]
  24. WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES