Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Feb 28;69(Pt 3):m172. doi: 10.1107/S1600536813004091

Diaqua­bis­(1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)manganese(II)

Zhi-Yong Xiong a,b,c, Lin Li a,*, Xiang-Jie Zhao a, Hai-Ming Chen a
PMCID: PMC3588475  PMID: 23476512

Abstract

In the title compound, [Mn(C4H3N2O2)2(H2O)2], the MnII ion is located on a twofold rotation axis and displays a distorted octa­hedral coordination environment, defined by two N,O-bidentate 1H-imidazole-4-carboxyl­ate ligands in the equatorial plane and two water mol­ecules in axial positions. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network. π–π stacking inter­actions between the imidazole rings [centroid–centroid distances = 3.5188 (15) and 3.6687 (15) Å] further stabilize the structure.

Related literature  

For related structures, see: Cai et al. (2012); Chen (2012); Gryz et al. (2007); Haggag (2005); Shuai et al. (2011); Starosta & Leciejewicz (2006); Yin et al. (2009); Zheng et al. (2011).graphic file with name e-69-0m172-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(C4H3N2O2)2(H2O)2]

  • M r = 313.14

  • Orthorhombic, Inline graphic

  • a = 7.3052 (10) Å

  • b = 11.7997 (17) Å

  • c = 13.5156 (19) Å

  • V = 1165.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 298 K

  • 0.36 × 0.32 × 0.30 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.679, T max = 0.721

  • 5775 measured reflections

  • 1145 independent reflections

  • 972 reflections with I > 2σ(I)

  • R int = 0.067

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.07

  • 1145 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004091/hy2616sup1.cif

e-69-0m172-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004091/hy2616Isup2.hkl

e-69-0m172-Isup2.hkl (56.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.95 2.811 (3) 173
O1W—H1WA⋯O2ii 0.87 1.96 2.818 (2) 167
O1W—H1WB⋯O2iii 0.73 2.02 2.751 (2) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Engineering Research Center of Starch and Vegetable Protein Processing, Ministry of Education, South China University of Technology for supporting this work.

supplementary crystallographic information

Comment

In the past few years, structures containing metals and N-heterocyclic carboxylic acids have attracted much attention due to their fascinating structures and potential applications in many fields. 1H-Imidazole-4-carboxylic acid (H2imc), which contains two N atoms of an imidazole group and one carboxylate group, has been widely used to prepare a variety of coordination polymers with different structures and exceptional properties (Cai et al., 2012; Gryz et al., 2007; Haggag, 2005; Starosta & Leciejewicz, 2006; Zheng et al., 2011). For instance, three mononuclear complexes, [Cd(Himc)2(H2O)2] (Yin et al., 2009), [Zn(Himc)2(H2O)2] (Shuai et al., 2011) and [Co(Himc)2(H2O)2] (Chen, 2012), have been reported. In this paper, we report the synthesis and structure of a new Mn(II) coordination polymer, [Mn(Himc)2(H2O)2], which is isomorphous with the Cd(II), Zn(II) and Co(II) analogs.

The asymmetric unit of the title compound contains a half of [Mn(Himc)2(H2O)2] formula unit. The MnII ion, lying on a twofold rotation axis, is six-coordinated by two N and two O atoms from two cis-oriented N,O-bidentate Himc ligands in the equatorial plane, and two water molecules in the axial positions, forming a slightly distorted octahedral geometry (Fig. 1). The bond lengths and angles around the Mn atom are normal. In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) involving the coordinated water O atoms, carboxylate O atoms and imidazole N atoms link the molecules into a three-dimensional supramolecular network, as presented in Fig. 2. π–π stacking interactions between the imidazole rings [centroid–centroid distances = 3.5188 (15) and 3.6687 (15) Å] further stabilize the crystal structure.

Experimental

A mixture of H2imc (0.30 mmol), MnCl2.6H2O (0.30 mmol) and 6 ml EtOH/H2O (v/v 1:1) was sealed into a 10 ml sample bottle reactor and heated at 373 k for 72 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 5 K/h. Colorless block crystals of the title compound were obtained, washed with distilled water and dried in air (yield: 30%).

Refinement

C- and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of the water molecule were located from a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+3/2, -y+3/2, z.]

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.

Crystal data

[Mn(C4H3N2O2)2(H2O)2] F(000) = 636
Mr = 313.14 Dx = 1.785 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 1516 reflections
a = 7.3052 (10) Å θ = 3.3–24.9°
b = 11.7997 (17) Å µ = 1.16 mm1
c = 13.5156 (19) Å T = 298 K
V = 1165.0 (3) Å3 Block, colourless
Z = 4 0.36 × 0.32 × 0.30 mm

Data collection

Bruker APEXII CCD diffractometer 1145 independent reflections
Radiation source: fine-focus sealed tube 972 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.067
φ and ω scans θmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −8→9
Tmin = 0.679, Tmax = 0.721 k = −14→10
5775 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3284P] where P = (Fo2 + 2Fc2)/3
1145 reflections (Δ/σ)max = 0.001
87 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.7500 0.7500 0.63202 (3) 0.0256 (2)
N1 0.5501 (2) 0.81048 (17) 0.52125 (14) 0.0282 (5)
N2 0.3599 (3) 0.87066 (19) 0.40742 (14) 0.0342 (5)
H2 0.3136 0.8835 0.3500 0.041*
C1 0.4022 (3) 0.87462 (18) 0.67505 (16) 0.0238 (5)
C2 0.4063 (3) 0.86601 (18) 0.56583 (16) 0.0241 (5)
C4 0.5155 (3) 0.8144 (2) 0.42597 (17) 0.0350 (6)
H4 0.5895 0.7822 0.3775 0.042*
C3 0.2882 (4) 0.9039 (2) 0.49557 (18) 0.0312 (5)
H3 0.1804 0.9442 0.5057 0.037*
O1 0.5374 (2) 0.83532 (14) 0.72111 (11) 0.0310 (4)
O2 0.2642 (2) 0.91985 (15) 0.71532 (12) 0.0302 (4)
O1W 0.5981 (2) 0.59207 (14) 0.66084 (14) 0.0392 (5)
H1WA 0.6528 0.5466 0.7024 0.059*
H1WB 0.5022 0.5856 0.6758 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0235 (4) 0.0344 (4) 0.0189 (3) 0.00646 (18) 0.000 0.000
N1 0.0272 (11) 0.0389 (12) 0.0184 (10) 0.0068 (8) −0.0009 (8) −0.0021 (8)
N2 0.0348 (13) 0.0490 (13) 0.0186 (10) 0.0037 (9) −0.0074 (8) 0.0014 (8)
C1 0.0247 (12) 0.0233 (11) 0.0233 (12) −0.0029 (9) 0.0020 (9) −0.0011 (8)
C2 0.0243 (12) 0.0288 (12) 0.0192 (12) 0.0008 (9) 0.0002 (9) −0.0007 (8)
C4 0.0359 (15) 0.0506 (16) 0.0186 (12) 0.0067 (11) 0.0000 (10) −0.0031 (10)
C3 0.0289 (12) 0.0391 (13) 0.0256 (13) 0.0037 (10) −0.0008 (10) 0.0009 (10)
O1 0.0287 (10) 0.0457 (10) 0.0186 (8) 0.0087 (7) −0.0010 (7) −0.0002 (7)
O2 0.0243 (10) 0.0432 (11) 0.0232 (10) 0.0047 (6) 0.0048 (6) −0.0051 (7)
O1W 0.0279 (10) 0.0429 (11) 0.0467 (12) 0.0036 (7) 0.0039 (8) 0.0133 (8)

Geometric parameters (Å, º)

Mn1—O1W 2.2037 (17) N2—H2 0.8600
Mn1—O1Wi 2.2038 (17) C1—O1 1.257 (3)
Mn1—O1i 2.2079 (16) C1—O2 1.264 (3)
Mn1—O1 2.2079 (16) C1—C2 1.480 (3)
Mn1—N1 2.2097 (19) C2—C3 1.359 (3)
Mn1—N1i 2.2097 (19) C4—H4 0.9300
N1—C4 1.313 (3) C3—H3 0.9300
N1—C2 1.377 (3) O1W—H1WA 0.87
N2—C4 1.340 (3) O1W—H1WB 0.73
N2—C3 1.359 (3)
O1W—Mn1—O1Wi 159.64 (10) C4—N2—H2 126.1
O1W—Mn1—O1i 82.66 (6) C3—N2—H2 126.1
O1Wi—Mn1—O1i 86.27 (6) O1—C1—O2 124.7 (2)
O1W—Mn1—O1 86.27 (6) O1—C1—C2 116.93 (18)
O1Wi—Mn1—O1 82.66 (6) O2—C1—C2 118.34 (19)
O1i—Mn1—O1 113.90 (8) C3—C2—N1 109.6 (2)
O1W—Mn1—N1 93.44 (7) C3—C2—C1 131.4 (2)
O1Wi—Mn1—N1 100.34 (7) N1—C2—C1 118.98 (18)
O1i—Mn1—N1 168.96 (6) N1—C4—N2 111.4 (2)
O1—Mn1—N1 75.97 (7) N1—C4—H4 124.3
O1W—Mn1—N1i 100.34 (7) N2—C4—H4 124.3
O1Wi—Mn1—N1i 93.44 (7) C2—C3—N2 105.9 (2)
O1i—Mn1—N1i 75.96 (7) C2—C3—H3 127.1
O1—Mn1—N1i 168.97 (6) N2—C3—H3 127.1
N1—Mn1—N1i 94.70 (10) C1—O1—Mn1 116.82 (14)
C4—N1—C2 105.38 (19) Mn1—O1W—H1WA 113.7
C4—N1—Mn1 143.43 (17) Mn1—O1W—H1WB 128.2
C2—N1—Mn1 111.19 (14) H1WA—O1W—H1WB 101.3
C4—N2—C3 107.8 (2)
O1W—Mn1—N1—C4 −95.6 (3) O1—C1—C2—N1 3.7 (3)
O1Wi—Mn1—N1—C4 99.5 (3) O2—C1—C2—N1 −175.9 (2)
O1i—Mn1—N1—C4 −26.7 (5) C2—N1—C4—N2 1.0 (3)
O1—Mn1—N1—C4 179.1 (3) Mn1—N1—C4—N2 −178.4 (2)
N1i—Mn1—N1—C4 5.1 (3) C3—N2—C4—N1 −0.8 (3)
O1W—Mn1—N1—C2 85.01 (16) N1—C2—C3—N2 0.3 (3)
O1Wi—Mn1—N1—C2 −79.94 (16) C1—C2—C3—N2 −179.3 (2)
O1i—Mn1—N1—C2 153.9 (3) C4—N2—C3—C2 0.3 (3)
O1—Mn1—N1—C2 −0.28 (15) O2—C1—O1—Mn1 175.69 (16)
N1i—Mn1—N1—C2 −174.31 (19) C2—C1—O1—Mn1 −3.9 (2)
C4—N1—C2—C3 −0.8 (3) O1W—Mn1—O1—C1 −92.12 (16)
Mn1—N1—C2—C3 178.83 (16) O1Wi—Mn1—O1—C1 105.01 (16)
C4—N1—C2—C1 178.8 (2) O1i—Mn1—O1—C1 −172.39 (18)
Mn1—N1—C2—C1 −1.5 (2) N1—Mn1—O1—C1 2.38 (16)
O1—C1—C2—C3 −176.7 (2) N1i—Mn1—O1—C1 35.2 (4)
O2—C1—C2—C3 3.7 (3)

Symmetry code: (i) −x+3/2, −y+3/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2ii 0.86 1.95 2.811 (3) 173
O1W—H1WA···O2iii 0.87 1.96 2.818 (2) 167
O1W—H1WB···O2iv 0.73 2.02 2.751 (2) 176

Symmetry codes: (ii) −x+1/2, y, z−1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2616).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Cai, S.-L., Pan, M., Zheng, S.-R., Tan, J.-B., Fan, J. & Zhang, W.-G. (2012). CrystEngComm, 14, 2308–2315.
  5. Chen, W.-S. (2012). Acta Cryst. E68, m1246. [DOI] [PMC free article] [PubMed]
  6. Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.
  7. Haggag, S. S. (2005). Egypt. J. Chem. 48, 27–41.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897. [DOI] [PMC free article] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.
  12. Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.
  13. Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813004091/hy2616sup1.cif

e-69-0m172-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813004091/hy2616Isup2.hkl

e-69-0m172-Isup2.hkl (56.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES