Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 10;68(Pt 12):o3332–o3333. doi: 10.1107/S160053681204593X

Diethyl 3,4-dimethyl­thieno[2,3-b]thio­phene-2,5-dicarboxyl­ate

Mehmet Akkurt a,*, Alan R Kennedy b,*, Sabry H H Younes c, Shaaban K Mohamed d,e, Gary J Miller f,*
PMCID: PMC3588935  PMID: 23476171

Abstract

In the title compound, C14H16O4S2, the thieno[2,3-b]thio­phene ring systems are planar [maximum deviation = 0.008 (2) Å]. The mol­ecular conformation is stabilized by intra­molecular C—H⋯O hydrogen bonds, while the crystal packing is stabilized by C—H⋯O, C—H⋯π and π–π stacking [centroid–centroid distance = 3.6605 (14) Å] inter­actions, which lead to supra­molecular layers in the ab plane.

Related literature  

For the use of thienthio­phenes as versatile precursors for the synthesis of various heterocycles, see: Mabkhot et al. (2010, 2012); Litvinov (2005). For their industrial applications, see: Lee & Sotzing (2001); Heeney et al. (2005); Gather et al. (2008); He et al. (2009). For pharmaceutical values of thieno[2,3-b]thio­phenes, see: Jarak et al. (2006); Egbertson et al. (1999). For bond lengths and bond angles in similar compounds, see: Umadevi et al. (2009); Gunasekaran et al. (2009); Wang et al. (2008). For the synthesis of the title compound, see: Comel & Kirsch (2001a ,b ). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995).graphic file with name e-68-o3332-scheme1.jpg

Experimental  

Crystal data  

  • C14H16O4S2

  • M r = 312.39

  • Triclinic, Inline graphic

  • a = 7.3497 (3) Å

  • b = 8.4720 (4) Å

  • c = 12.8629 (5) Å

  • α = 102.770 (3)°

  • β = 99.545 (3)°

  • γ = 107.779 (4)°

  • V = 719.96 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 123 K

  • 0.30 × 0.08 × 0.06 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.966, T max = 1.000

  • 6901 measured reflections

  • 3486 independent reflections

  • 2661 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.106

  • S = 1.04

  • 3486 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204593X/tk5168sup1.cif

e-68-o3332-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204593X/tk5168Isup2.hkl

e-68-o3332-Isup2.hkl (167.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204593X/tk5168Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the S2/C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1 0.98 2.22 2.980 (3) 133
C8—H8A⋯O3 0.98 2.23 2.909 (3) 125
C11—H11A⋯O4i 0.98 2.53 3.471 (3) 161
C8—H8CCg2ii 0.98 2.74 3.578 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SHHY thanks Sohag University for facilitating this collaborative project with Manchester Metropolitan University. Our gratitude is extended to Erciyes University and the University of Strathclyde for supporting this study.

supplementary crystallographic information

Comment

Thienothiophene compounds are a great class of sulfur heterocyclic chemistry due their utilities in various applications in industrial and medicinal fields. They have wide variety applications in optical and electronic systems (Gather et al., 2008; He et al., 2009). Besides, thieno[2,3-b]thiophenes showed useful reactivities as co-polymerization agents (Lee & Sotzing, 2001) and as semiconductors (Heeney et al., 2005). They have been developed and tested as potential antitumor, antiviral, antiglaucoma drugs, antiproliferation agents, or as inhibitors of platelet aggregation (Jarak et al., 2006; Egbertson et al., 1999). In addition, thienothiophenes have been used as versatile precursors for synthesis of various heterocycles (Mabkhot et al., 2012, Mabkhot et al., 2010; Litvinov, 2005). In view of such important applications, we herein report the crystal structure determination of the title compound (I) to investigate the relationship between its structure and antibacterial activity.

In the title compound, C14H16O4S2, the thieno[2,3-b]thiophene ring systems are planar with a maximum deviation of 0.008 (2) Å for C2. The values of the bond lengths and bond angles in (I) are in the normal range and comparable to those reported for the similar compounds (Umadevi et al., 2009; Gunasekaran et al., 2009; Wang et al., 2008). The O1–C9–C2–S2, O2–C9–C2–S2, O3–C12–C6–S1 and O4–C12–C6–S1 bond angles are 175.95 (19), -4.8 (3), 176.14 (16) and 4.0 (3)°, respectively.

The intramolecular C7—H7A···O1 and C8—H8A···O3 interactions form six- membered rings, producing S(6) ring motif (Table 1; Bernstein et al., 1995). In the crystal, the molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2), and are further consolidated by C—H···π interactions and π-π stacking [Cg1···Cg1(-x, 1 - y, 1 - z) = 3.6605 (14) Å; where Cg1 is a centroid of the S1/C1/C4–C6 ring] interactions.

Experimental

The title compound was prepared according to the reported method in literature (Comel & Kirsch, 2001a,b). Single crystals suitable for X-ray analysis were grown in an ethanol solution of (I) at room temperature over 24 h. M.pt: 413 K.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.98 and 0.99 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the packing and hydrogen bonding of (I) down the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C14H16O4S2 Z = 2
Mr = 312.39 F(000) = 328
Triclinic, P1 Dx = 1.441 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3497 (3) Å Cell parameters from 2806 reflections
b = 8.4720 (4) Å θ = 3.2–29.4°
c = 12.8629 (5) Å µ = 0.38 mm1
α = 102.770 (3)° T = 123 K
β = 99.545 (3)° Rod, colourless
γ = 107.779 (4)° 0.30 × 0.08 × 0.06 mm
V = 719.96 (6) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 3486 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2661 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 16.0727 pixels mm-1 θmax = 29.5°, θmin = 3.2°
ω scans h = −9→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −11→11
Tmin = 0.966, Tmax = 1.000 l = −17→17
6901 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.4173P] where P = (Fo2 + 2Fc2)/3
3486 reflections (Δ/σ)max = 0.002
185 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.19179 (8) 0.66605 (7) 0.37995 (4) 0.0197 (2)
S2 0.42025 (8) 0.92886 (7) 0.61200 (4) 0.0196 (2)
O1 0.6436 (2) 0.8879 (2) 0.90039 (13) 0.0290 (5)
O2 0.6126 (2) 1.1054 (2) 0.83495 (12) 0.0258 (5)
O3 0.0104 (2) 0.1626 (2) 0.26378 (12) 0.0222 (5)
O4 −0.0238 (2) 0.3735 (2) 0.19133 (13) 0.0273 (5)
C1 0.3073 (3) 0.7294 (3) 0.51711 (17) 0.0180 (6)
C2 0.4771 (3) 0.8283 (3) 0.71229 (17) 0.0198 (7)
C3 0.4109 (3) 0.6525 (3) 0.67430 (17) 0.0179 (6)
C4 0.3115 (3) 0.5931 (3) 0.55924 (17) 0.0167 (6)
C5 0.2161 (3) 0.4277 (3) 0.47680 (17) 0.0173 (6)
C6 0.1453 (3) 0.4496 (3) 0.37738 (18) 0.0187 (6)
C7 0.4314 (3) 0.5352 (3) 0.74333 (19) 0.0241 (7)
C8 0.2012 (3) 0.2576 (3) 0.49704 (18) 0.0215 (7)
C9 0.5860 (3) 0.9392 (3) 0.82492 (18) 0.0208 (7)
C10 0.7119 (4) 1.2220 (3) 0.94621 (19) 0.0270 (8)
C11 0.7189 (4) 1.3989 (3) 0.9461 (2) 0.0333 (8)
C12 0.0360 (3) 0.3267 (3) 0.26830 (18) 0.0200 (7)
C13 −0.0980 (3) 0.0358 (3) 0.15737 (18) 0.0238 (7)
C14 −0.1327 (4) −0.1397 (3) 0.1742 (2) 0.0339 (8)
H7A 0.51440 0.60450 0.81710 0.0360*
H7B 0.49260 0.45630 0.70920 0.0360*
H7C 0.30070 0.46780 0.74890 0.0360*
H8A 0.09500 0.16430 0.43900 0.0320*
H8B 0.17240 0.25770 0.56880 0.0320*
H8C 0.32650 0.23930 0.49660 0.0320*
H10A 0.84740 1.22180 0.96810 0.0320*
H10B 0.63870 1.18320 0.99940 0.0320*
H11A 0.79250 1.43660 0.89370 0.0500*
H11B 0.78470 1.47890 1.02010 0.0500*
H11C 0.58420 1.39800 0.92450 0.0500*
H13A −0.02020 0.05130 0.10210 0.0290*
H13B −0.22530 0.04930 0.13110 0.0290*
H14A −0.00580 −0.14950 0.20290 0.0510*
H14B −0.20110 −0.22920 0.10380 0.0510*
H14C −0.21400 −0.15490 0.22700 0.0510*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0227 (3) 0.0181 (3) 0.0164 (3) 0.0062 (2) 0.0022 (2) 0.0049 (2)
S2 0.0231 (3) 0.0171 (3) 0.0170 (3) 0.0065 (2) 0.0030 (2) 0.0041 (2)
O1 0.0353 (9) 0.0283 (10) 0.0183 (8) 0.0094 (8) −0.0007 (7) 0.0051 (7)
O2 0.0300 (9) 0.0246 (10) 0.0164 (8) 0.0088 (7) −0.0017 (7) 0.0003 (7)
O3 0.0253 (8) 0.0173 (9) 0.0181 (8) 0.0045 (7) 0.0002 (6) 0.0020 (6)
O4 0.0327 (9) 0.0233 (10) 0.0199 (8) 0.0064 (7) −0.0002 (7) 0.0045 (7)
C1 0.0162 (10) 0.0191 (12) 0.0167 (10) 0.0050 (9) 0.0030 (8) 0.0037 (9)
C2 0.0196 (11) 0.0256 (13) 0.0152 (10) 0.0092 (9) 0.0043 (8) 0.0063 (9)
C3 0.0156 (10) 0.0218 (12) 0.0186 (11) 0.0074 (9) 0.0055 (8) 0.0083 (9)
C4 0.0130 (10) 0.0188 (12) 0.0187 (10) 0.0050 (8) 0.0053 (8) 0.0063 (9)
C5 0.0157 (10) 0.0173 (12) 0.0201 (11) 0.0065 (9) 0.0059 (8) 0.0061 (9)
C6 0.0171 (10) 0.0175 (12) 0.0199 (11) 0.0054 (9) 0.0048 (8) 0.0033 (9)
C7 0.0279 (12) 0.0230 (13) 0.0210 (11) 0.0095 (10) 0.0029 (9) 0.0074 (10)
C8 0.0225 (11) 0.0188 (12) 0.0218 (11) 0.0063 (9) 0.0035 (9) 0.0063 (9)
C9 0.0164 (11) 0.0251 (13) 0.0203 (11) 0.0071 (9) 0.0053 (9) 0.0052 (9)
C10 0.0321 (13) 0.0239 (14) 0.0191 (12) 0.0081 (10) 0.0013 (10) 0.0010 (10)
C11 0.0400 (15) 0.0257 (15) 0.0266 (13) 0.0098 (12) −0.0010 (11) 0.0023 (11)
C12 0.0172 (11) 0.0207 (12) 0.0200 (11) 0.0046 (9) 0.0058 (8) 0.0041 (9)
C13 0.0221 (11) 0.0187 (13) 0.0211 (11) 0.0023 (9) 0.0009 (9) −0.0025 (9)
C14 0.0379 (15) 0.0217 (14) 0.0345 (15) 0.0076 (11) 0.0043 (11) 0.0012 (11)

Geometric parameters (Å, º)

S1—C1 1.711 (2) C10—C11 1.484 (4)
S1—C6 1.751 (3) C13—C14 1.501 (4)
S2—C1 1.712 (2) C7—H7A 0.9800
S2—C2 1.758 (2) C7—H7B 0.9800
O1—C9 1.214 (3) C7—H7C 0.9800
O2—C9 1.334 (3) C8—H8A 0.9800
O2—C10 1.465 (3) C8—H8B 0.9800
O3—C12 1.331 (3) C8—H8C 0.9800
O3—C13 1.459 (3) C10—H10A 0.9900
O4—C12 1.211 (3) C10—H10B 0.9900
C1—C4 1.386 (3) C11—H11A 0.9800
C2—C3 1.360 (3) C11—H11B 0.9800
C2—C9 1.475 (3) C11—H11C 0.9800
C3—C4 1.437 (3) C13—H13A 0.9900
C3—C7 1.495 (3) C13—H13B 0.9900
C4—C5 1.441 (3) C14—H14A 0.9800
C5—C6 1.373 (3) C14—H14B 0.9800
C5—C8 1.495 (4) C14—H14C 0.9800
C6—C12 1.472 (3)
C1—S1—C6 89.57 (11) C3—C7—H7C 109.00
C1—S2—C2 89.39 (11) H7A—C7—H7B 109.00
C9—O2—C10 114.48 (17) H7A—C7—H7C 109.00
C12—O3—C13 115.57 (17) H7B—C7—H7C 109.00
S1—C1—S2 132.34 (15) C5—C8—H8A 109.00
S1—C1—C4 113.81 (17) C5—C8—H8B 109.00
S2—C1—C4 113.85 (16) C5—C8—H8C 109.00
S2—C2—C3 113.92 (16) H8A—C8—H8B 110.00
S2—C2—C9 118.18 (18) H8A—C8—H8C 109.00
C3—C2—C9 127.9 (2) H8B—C8—H8C 109.00
C2—C3—C4 111.0 (2) O2—C10—H10A 110.00
C2—C3—C7 124.9 (2) O2—C10—H10B 110.00
C4—C3—C7 124.1 (2) C11—C10—H10A 110.00
C1—C4—C3 111.8 (2) C11—C10—H10B 110.00
C1—C4—C5 112.16 (19) H10A—C10—H10B 108.00
C3—C4—C5 136.0 (2) C10—C11—H11A 109.00
C4—C5—C6 110.3 (2) C10—C11—H11B 109.00
C4—C5—C8 124.45 (19) C10—C11—H11C 109.00
C6—C5—C8 125.3 (2) H11A—C11—H11B 109.00
S1—C6—C5 114.18 (18) H11A—C11—H11C 109.00
S1—C6—C12 113.10 (17) H11B—C11—H11C 109.00
C5—C6—C12 132.7 (2) O3—C13—H13A 110.00
O1—C9—O2 123.4 (2) O3—C13—H13B 110.00
O1—C9—C2 125.1 (2) C14—C13—H13A 110.00
O2—C9—C2 111.59 (19) C14—C13—H13B 110.00
O2—C10—C11 108.25 (19) H13A—C13—H13B 109.00
O3—C12—O4 124.3 (2) C13—C14—H14A 109.00
O3—C12—C6 113.56 (19) C13—C14—H14B 109.00
O4—C12—C6 122.1 (2) C13—C14—H14C 109.00
O3—C13—C14 106.76 (18) H14A—C14—H14B 110.00
C3—C7—H7A 109.00 H14A—C14—H14C 109.00
C3—C7—H7B 109.00 H14B—C14—H14C 109.00
C6—S1—C1—S2 179.7 (2) C9—C2—C3—C7 2.3 (4)
C6—S1—C1—C4 0.3 (2) S2—C2—C9—O1 −175.95 (19)
C1—S1—C6—C5 −0.3 (2) S2—C2—C9—O2 4.8 (3)
C1—S1—C6—C12 179.25 (18) C3—C2—C9—O1 4.7 (4)
C2—S2—C1—S1 −179.2 (2) C3—C2—C9—O2 −174.6 (2)
C2—S2—C1—C4 0.3 (2) C2—C3—C4—C1 −0.5 (3)
C1—S2—C2—C3 −0.6 (2) C2—C3—C4—C5 179.2 (3)
C1—S2—C2—C9 180.0 (2) C7—C3—C4—C1 177.4 (2)
C10—O2—C9—O1 −2.0 (3) C7—C3—C4—C5 −3.0 (4)
C10—O2—C9—C2 177.3 (2) C1—C4—C5—C6 −0.1 (3)
C9—O2—C10—C11 −176.3 (2) C1—C4—C5—C8 178.6 (2)
C13—O3—C12—O4 −0.1 (3) C3—C4—C5—C6 −179.8 (3)
C13—O3—C12—C6 179.74 (19) C3—C4—C5—C8 −1.0 (4)
C12—O3—C13—C14 −172.8 (2) C4—C5—C6—S1 0.3 (3)
S1—C1—C4—C3 179.62 (17) C4—C5—C6—C12 −179.2 (2)
S1—C1—C4—C5 −0.1 (3) C8—C5—C6—S1 −178.41 (19)
S2—C1—C4—C3 0.1 (3) C8—C5—C6—C12 2.1 (4)
S2—C1—C4—C5 −179.66 (17) S1—C6—C12—O3 176.14 (16)
S2—C2—C3—C4 0.7 (3) S1—C6—C12—O4 −4.0 (3)
S2—C2—C3—C7 −177.17 (19) C5—C6—C12—O3 −4.4 (4)
C9—C2—C3—C4 −179.9 (2) C5—C6—C12—O4 175.5 (3)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the S2/C1–C4 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7A···O1 0.98 2.22 2.980 (3) 133
C8—H8A···O3 0.98 2.23 2.909 (3) 125
C11—H11A···O4i 0.98 2.53 3.471 (3) 161
C8—H8C···Cg2ii 0.98 2.74 3.578 (3) 144

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5168).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Comel, A. & Kirsch, G. (2001a). J. Heterocycl. Chem. 38, 1167–1171.
  3. Comel, A. & Kirsch, G. (2001b). J. Heterocycl. Chem. 38, 1167–1171.
  4. Egbertson, M. S., Cook, J. J., Hednar, H., Prugh, J. D., Hednar, R. A., Gaul, S. L., Gould, R. J., Hartman, G. D., Homnick, C. F., Holahan, L. M. M., Libby, L. A., Lynch, J. J., Sitko, G. R., Stranieri, M. T. & Vassallo, L. M. (1999). J. Med. Chem. 42, 2409–2421. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gather, M. C., Heeny, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. 9, 1079–1081. [DOI] [PubMed]
  7. Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455. [DOI] [PMC free article] [PubMed]
  8. He, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930–11938. [DOI] [PubMed]
  9. Heeney, M., Bailey, C., Genevicius, K., Shkunov, M., Sparrowe, D., Tierney, S. & McCulloch, U. (2005). J. Am. Chem. Soc. 127, 1078–1079. [DOI] [PubMed]
  10. Jarak, I., Kralj, M., Piantanida, I., Suman, L., Zinic, M., Pavelic, K. & Karminski-Zamola, G. (2006). Bioorg. Med. Chem. 14, 2859–2868. [DOI] [PubMed]
  11. Lee, K. & Sotzing, G. A. (2001). Macromolecules, 34, 5746–5747.
  12. Litvinov, V. P. (2005). Russ. Chem. Rev. 74, 217–248.
  13. Mabkhot, N. Y., Barakat, A., Al-Majid, A. M. & Alshahrani, S. A. (2012). Int. J. Mol. Sci 13, 2263–2275. [DOI] [PMC free article] [PubMed]
  14. Mabkhot, Y. N., Kheder, N. A. & Al-Majid, A. M. (2010). Molecules, 15, 9418–9426. [DOI] [PMC free article] [PubMed]
  15. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Umadevi, M., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2790. [DOI] [PMC free article] [PubMed]
  19. Wang, X., Li, Y. & Liu, M.-G. (2008). Acta Cryst. E64, o1180. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204593X/tk5168sup1.cif

e-68-o3332-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204593X/tk5168Isup2.hkl

e-68-o3332-Isup2.hkl (167.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204593X/tk5168Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES