Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1990 May;10(5):1901–1907. doi: 10.1128/mcb.10.5.1901

Deregulated Bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin M and D-expressing B-cell population.

T J McDonnell 1, G Nunez 1, F M Platt 1, D Hockenberry 1, L London 1, J P McKearn 1, S J Korsmeyer 1
PMCID: PMC360535  PMID: 2183011

Abstract

We characterized the basis for the follicular lymphoproliferation in transgenic mice bearing a Bcl-2-immunoglobulin (Bcl-2-Ig) minigene representing the t(14;18) of human follicular lymphoma. Discriminatory S1 nuclease protection assays revealed that the Bcl-2-Ig transgene was overexpressed relative to endogenous mouse Bcl-2 in spleen and thymus. Western (immunoblot) analysis demonstrated the overproduction of the human 25-kilodalton Bcl-2 protein, which arose from the transgene, in spleen, thymus, and the expanded B-cell subset. Despite the generalized lymphoid pattern of deregulation, two-color flow cytometry and density gradient centrifugation indicated that the expanded lymphocytes were predominantly small, resting B cells coexpressing B220, immunoglobulin M (IgM), IgD, Ia, and kappa. Cell cycle analysis confirmed that about 97% of these expanded B cells reside in G0/G1. An extensive characterization of transgenic lines revealed a fourfold excess of IgM-IgD-expressing B cells in spleen and dramatically increased numbers in bone marrow. While resting, these cells proliferated in response to lipopolysaccharide and anti-IgM and demonstrated normal B-cell colony formation in soft agar. Moreover, these B cells, which demonstrated an extended survival in vitro even in the absence of stroma, were also resting in G0, yet were capable of proliferative responses. These findings provide consistent evidence that the accumulation of B cells after Bcl-2 overproduction is secondary to prolonged cell survival and not increased cell cycling. This suggests a unique role for Bcl-2 as a proto-oncogene that enhances cell survival independent of promoting cell division.

Full text

PDF
1903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakhshi A., Jensen J. P., Goldman P., Wright J. J., McBride O. W., Epstein A. L., Korsmeyer S. J. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell. 1985 Jul;41(3):899–906. doi: 10.1016/s0092-8674(85)80070-2. [DOI] [PubMed] [Google Scholar]
  2. Cesarman E., Dalla-Favera R., Bentley D., Groudine M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science. 1987 Nov 27;238(4831):1272–1275. doi: 10.1126/science.3685977. [DOI] [PubMed] [Google Scholar]
  3. Cleary M. L., Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7439–7443. doi: 10.1073/pnas.82.21.7439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleary M. L., Smith S. D., Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 1986 Oct 10;47(1):19–28. doi: 10.1016/0092-8674(86)90362-4. [DOI] [PubMed] [Google Scholar]
  5. Crescenzi M., Seto M., Herzig G. P., Weiss P. D., Griffith R. C., Korsmeyer S. J. Thermostable DNA polymerase chain amplification of t(14;18) chromosome breakpoints and detection of minimal residual disease. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4869–4873. doi: 10.1073/pnas.85.13.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crissman H. A., Steinkamp J. A. Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J Cell Biol. 1973 Dec;59(3):766–771. doi: 10.1083/jcb.59.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalla-Favera R., Bregni M., Erikson J., Patterson D., Gallo R. C., Croce C. M. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7824–7827. doi: 10.1073/pnas.79.24.7824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeFranco A. L., Ashwell J. D., Schwartz R. H., Paul W. E. Polyclonal stimulation of resting B lymphocytes by antigen-specific T lymphocytes. J Exp Med. 1984 Mar 1;159(3):861–880. doi: 10.1084/jem.159.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fulop G. M., Osmond D. G. Regulation of bone marrow lymphocyte production. III. Increased production of B and non-B lymphocytes after administering systemic antigens. Cell Immunol. 1983 Jan;75(1):80–90. doi: 10.1016/0008-8749(83)90307-6. [DOI] [PubMed] [Google Scholar]
  10. Graninger W. B., Seto M., Boutain B., Goldman P., Korsmeyer S. J. Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest. 1987 Nov;80(5):1512–1515. doi: 10.1172/JCI113235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray D., MacLennan I. C., Bazin H., Khan M. Migrant mu+ delta+ and static mu+ delta- B lymphocyte subsets. Eur J Immunol. 1982 Jul;12(7):564–569. doi: 10.1002/eji.1830120707. [DOI] [PubMed] [Google Scholar]
  12. Kincade P. W., Ralph P., Moore M. A. Growth of B-lymphocytes clones in semisolid culture is mitogen dependent. J Exp Med. 1976 May 1;143(5):1265–1270. doi: 10.1084/jem.143.5.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Langdon W. Y., Harris A. W., Cory S., Adams J. M. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell. 1986 Oct 10;47(1):11–18. doi: 10.1016/0092-8674(86)90361-2. [DOI] [PubMed] [Google Scholar]
  14. Lee M. S., Chang K. S., Cabanillas F., Freireich E. J., Trujillo J. M., Stass S. A. Detection of minimal residual cells carrying the t(14;18) by DNA sequence amplification. Science. 1987 Jul 10;237(4811):175–178. doi: 10.1126/science.3110950. [DOI] [PubMed] [Google Scholar]
  15. Ley T. J., Anagnou N. P., Pepe G., Nienhuis A. W. RNA processing errors in patients with beta-thalassemia. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4775–4779. doi: 10.1073/pnas.79.15.4775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. London L., McKearn J. P. Activation and growth of colony-stimulating factor-dependent cell lines is cell cycle stage dependent. J Exp Med. 1987 Nov 1;166(5):1419–1435. doi: 10.1084/jem.166.5.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MacLennan I. C., Oldfield S., Liu Y. J., Lane P. J. Regulation of B-cell populations. Curr Top Pathol. 1989;79:37–57. doi: 10.1007/978-3-642-73855-5_3. [DOI] [PubMed] [Google Scholar]
  18. McDonnell T. J., Deane N., Platt F. M., Nunez G., Jaeger U., McKearn J. P., Korsmeyer S. J. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989 Apr 7;57(1):79–88. doi: 10.1016/0092-8674(89)90174-8. [DOI] [PubMed] [Google Scholar]
  19. Negrini M., Silini E., Kozak C., Tsujimoto Y., Croce C. M. Molecular analysis of mbcl-2: structure and expression of the murine gene homologous to the human gene involved in follicular lymphoma. Cell. 1987 May 22;49(4):455–463. doi: 10.1016/0092-8674(87)90448-x. [DOI] [PubMed] [Google Scholar]
  20. Opstelten D., Osmond D. G. Regulation of pre-B cell proliferation in bone marrow: immunofluorescence stathmokinetic studies of cytoplasmic mu chain-bearing cells in anti-IgM-treated mice, hematologically deficient mutant mice and mice given sheep red blood cells. Eur J Immunol. 1985 Jun;15(6):599–605. doi: 10.1002/eji.1830150613. [DOI] [PubMed] [Google Scholar]
  21. Osmond D. G. Population dynamics of bone marrow B lymphocytes. Immunol Rev. 1986 Oct;93:103–124. doi: 10.1111/j.1600-065x.1986.tb01504.x. [DOI] [PubMed] [Google Scholar]
  22. Rahal M. D., Osmond D. G. Heterogeneity of bone marrow lymphocytes: radioautographic detection of pre-B cells bearing cytoplasmic mu chains, and of B and T lymphocytes, and characterization of null lymphoid cells. Cell Immunol. 1984 Sep;87(2):379–388. doi: 10.1016/0008-8749(84)90007-8. [DOI] [PubMed] [Google Scholar]
  23. Sarmiento M., Loken M. R., Fitch F. W. Structural differences in cell surface T25 polypeptides from thymocytes and cloned T cells. Hybridoma. 1981;1(1):13–26. doi: 10.1089/hyb.1.1981.1.13. [DOI] [PubMed] [Google Scholar]
  24. Seto M., Jaeger U., Hockett R. D., Graninger W., Bennett S., Goldman P., Korsmeyer S. J. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J. 1988 Jan;7(1):123–131. doi: 10.1002/j.1460-2075.1988.tb02791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shtivelman E., Lifshitz B., Gale R. P., Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985 Jun 13;315(6020):550–554. doi: 10.1038/315550a0. [DOI] [PubMed] [Google Scholar]
  26. Taub R., Kirsch I., Morton C., Lenoir G., Swan D., Tronick S., Aaronson S., Leder P. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7837–7841. doi: 10.1073/pnas.79.24.7837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tsujimoto Y., Gorham J., Cossman J., Jaffe E., Croce C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985 Sep 27;229(4720):1390–1393. doi: 10.1126/science.3929382. [DOI] [PubMed] [Google Scholar]
  28. Vaux D. L., Cory S., Adams J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988 Sep 29;335(6189):440–442. doi: 10.1038/335440a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES