Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1991 Sep;11(9):4398–4404. doi: 10.1128/mcb.11.9.4398

High expression of a 3'----5' exonuclease activity is specific to B lymphocytes.

A L Kenter 1, J Tredup 1
PMCID: PMC361302  PMID: 1875929

Abstract

V(D)J joining, the immunoglobulin heavy-chain (IgH) class switch, and somatic hypermutation directed at variable regions are unique genetic recombination or mutation events which occur during B-cell differentiation. The enzymatic process directing and controlling these events remains obscure. An assay for exonucleolytic activity has been devised, and an exonuclease activity expressed at high levels in normal B lymphocytes has been detected. The high expression of this enzyme is specific to B lymphocytes and may be developmentally regulated. We have partially purified a B-cell-associated nuclease by column chromatography. Using this preparation, we have begun a rigorous analysis of its activity. This activity is a nonprocessive, 3'----5' exonuclease with a requirement for divalent cations. Our studies demonstrate that EDTA, poly(dI-dC), and glycerol are all inhibitory to B-cell-associated exonucleolytic activity. The exonuclease displays sequence preference but no sequence specificity when tested on a variety of native DNA substrates. This nuclease is distinct from other exonuclease activities previously described.

Full text

PDF
4404

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S., Sugiyama H., Yoshida N., Kikutani H., Yamamura Y., Kishimoto T. Isotype switching in murine pre-B cell lines. Cell. 1983 Sep;34(2):545–556. doi: 10.1016/0092-8674(83)90387-2. [DOI] [PubMed] [Google Scholar]
  2. Augusti-Tocco G., Sato G. Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci U S A. 1969 Sep;64(1):311–315. doi: 10.1073/pnas.64.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baltimore D. Somatic mutation gains its place among the generators of diversity. Cell. 1981 Nov;26(3 Pt 1):295–296. doi: 10.1016/0092-8674(81)90196-3. [DOI] [PubMed] [Google Scholar]
  4. Ben-Sasson S. A. Immunoglobulin differentiation is dictated by repeated recombination sequences within the V region prototype gene: a hypothesis. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4598–4602. doi: 10.1073/pnas.76.9.4598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
  6. Berek C., Griffiths G. M., Milstein C. Molecular events during maturation of the immune response to oxazolone. Nature. 1985 Aug 1;316(6027):412–418. doi: 10.1038/316412a0. [DOI] [PubMed] [Google Scholar]
  7. Brenner S., Milstein C. Origin of antibody variation. Nature. 1966 Jul 16;211(5046):242–243. doi: 10.1038/211242a0. [DOI] [PubMed] [Google Scholar]
  8. Cebra J. J., Komisar J. L., Schweitzer P. A. CH isotype 'switching' during normal B-lymphocyte development. Annu Rev Immunol. 1984;2:493–548. doi: 10.1146/annurev.iy.02.040184.002425. [DOI] [PubMed] [Google Scholar]
  9. Desiderio S., Baltimore D. Double-stranded cleavage by cell extracts near recombinational signal sequences of immunoglobulin genes. 1984 Apr 26-May 2Nature. 308(5962):860–862. doi: 10.1038/308860a0. [DOI] [PubMed] [Google Scholar]
  10. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doniger J., Grossman L. Human correxonuclease. Purification and properties of a DNA repair exonuclease from placenta. J Biol Chem. 1976 Aug 10;251(15):4579–4587. [PubMed] [Google Scholar]
  12. Echols H. Multiple DNA-protein interactions governing high-precision DNA transactions. Science. 1986 Sep 5;233(4768):1050–1056. doi: 10.1126/science.2943018. [DOI] [PubMed] [Google Scholar]
  13. French D. L., Laskov R., Scharff M. D. The role of somatic hypermutation in the generation of antibody diversity. Science. 1989 Jun 9;244(4909):1152–1157. doi: 10.1126/science.2658060. [DOI] [PubMed] [Google Scholar]
  14. Gearhart P. J., Bogenhagen D. F. Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3439–3443. doi: 10.1073/pnas.80.11.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gritzmacher C. A. Molecular aspects of heavy-chain class switching. Crit Rev Immunol. 1989;9(3):173–200. [PubMed] [Google Scholar]
  16. Hesse J. E., Lieber M. R., Mizuuchi K., Gellert M. V(D)J recombination: a functional definition of the joining signals. Genes Dev. 1989 Jul;3(7):1053–1061. doi: 10.1101/gad.3.7.1053. [DOI] [PubMed] [Google Scholar]
  17. Hollis G. F., Grossman L. Purification and characterization of DNase VII, a 3' leads to 5'-directed exonuclease from human placenta. J Biol Chem. 1981 Aug 10;256(15):8074–8079. [PubMed] [Google Scholar]
  18. Hope T. J., Aguilera R. J., Minie M. E., Sakano H. Endonucleolytic activity that cleaves immunoglobulin recombination sequences. Science. 1986 Mar 7;231(4742):1141–1145. doi: 10.1126/science.3003919. [DOI] [PubMed] [Google Scholar]
  19. Huber H. E., Iida S., Arber W., Bickle T. A. Site-specific DNA inversion is enhanced by a DNA sequence element in cis. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3776–3780. doi: 10.1073/pnas.82.11.3776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Iwasato T., Shimizu A., Honjo T., Yamagishi H. Circular DNA is excised by immunoglobulin class switch recombination. Cell. 1990 Jul 13;62(1):143–149. doi: 10.1016/0092-8674(90)90248-d. [DOI] [PubMed] [Google Scholar]
  21. Johnson R. C., Simon M. I. Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell. 1985 Jul;41(3):781–791. doi: 10.1016/s0092-8674(85)80059-3. [DOI] [PubMed] [Google Scholar]
  22. Jäck H. M., Wabl M. Immunoglobulin mRNA stability varies during B lymphocyte differentiation. EMBO J. 1988 Apr;7(4):1041–1046. doi: 10.1002/j.1460-2075.1988.tb02911.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kahmann R., Rudt F., Koch C., Mertens G. G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. 1985 Jul;41(3):771–780. doi: 10.1016/s0092-8674(85)80058-1. [DOI] [PubMed] [Google Scholar]
  24. Kataoka T., Kondo S., Nishi M., Kodaira M., Honjo T. Isolation and characterization of endonuclease J: a sequence-specific endonuclease cleaving immunoglobulin genes. Nucleic Acids Res. 1984 Aug 10;12(15):5995–6010. doi: 10.1093/nar/12.15.5995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kenter A. L., Watson J. V., Azim T., Rabbitts T. H. Colcemid inhibits growth during early G1 in normal but not in tumorigenic lymphocytes. Exp Cell Res. 1986 Nov;167(1):241–251. doi: 10.1016/0014-4827(86)90220-x. [DOI] [PubMed] [Google Scholar]
  26. Kenter A. L., Watson J. V. Cell cycle kinetics model of LPS-stimulated spleen cells correlates switch region rearrangements with S phase. J Immunol Methods. 1987 Feb 26;97(1):111–117. doi: 10.1016/0022-1759(87)90112-8. [DOI] [PubMed] [Google Scholar]
  27. Kim S., Davis M., Sinn E., Patten P., Hood L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell. 1981 Dec;27(3 Pt 2):573–581. doi: 10.1016/0092-8674(81)90399-8. [DOI] [PubMed] [Google Scholar]
  28. Kunkel T. A. Exonucleolytic proofreading. Cell. 1988 Jun 17;53(6):837–840. doi: 10.1016/s0092-8674(88)90189-4. [DOI] [PubMed] [Google Scholar]
  29. Lieber M. R., Hesse J. E., Mizuuchi K., Gellert M. Developmental stage specificity of the lymphoid V(D)J recombination activity. Genes Dev. 1987 Oct;1(8):751–761. doi: 10.1101/gad.1.8.751. [DOI] [PubMed] [Google Scholar]
  30. Lindahl T. Excision of pyrimidine dimers from ultraviolet-irradiated DNA by exonucleases from mammalian cells. Eur J Biochem. 1971 Feb 1;18(3):407–414. doi: 10.1111/j.1432-1033.1971.tb01257.x. [DOI] [PubMed] [Google Scholar]
  31. Manser T., Gefter M. L. The molecular evolution of the immune response: idiotope-specific suppression indicates that B cells express germ-line-encoded V genes prior to antigenic stimulation. Eur J Immunol. 1986 Nov;16(11):1439–1444. doi: 10.1002/eji.1830161120. [DOI] [PubMed] [Google Scholar]
  32. Marcu K. B. Immunoglobulin heavy-chain constant-region genes. Cell. 1982 Jul;29(3):719–721. doi: 10.1016/0092-8674(82)90431-7. [DOI] [PubMed] [Google Scholar]
  33. Masson D., Corthésy P., Nabholz M., Tschopp J. Appearance of cytolytic granules upon induction of cytolytic activity in CTL-hybrids. EMBO J. 1985 Oct;4(10):2533–2538. doi: 10.1002/j.1460-2075.1985.tb03967.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Matsuoka M., Yoshida K., Maeda T., Usuda S., Sakano H. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell. 1990 Jul 13;62(1):135–142. doi: 10.1016/0092-8674(90)90247-c. [DOI] [PubMed] [Google Scholar]
  35. McKearn J. P., Rosenberg N. Mapping cell surface antigens on mouse pre-B cell lines. Eur J Immunol. 1985 Mar;15(3):295–298. doi: 10.1002/eji.1830150316. [DOI] [PubMed] [Google Scholar]
  36. Mosbaugh D. W., Linn S. Excision repair and DNA synthesis with a combination of HeLa DNA polymerase beta and DNase V. J Biol Chem. 1983 Jan 10;258(1):108–118. [PubMed] [Google Scholar]
  37. Mosbaugh D. W., Meyer R. R. Interaction of mammalian deoxyribonuclease V, a double strand 3' to 5' and 5' to 3' exonuclease, with deoxyribonucleic acid polymerase-beta from the Novikoff hepatoma. J Biol Chem. 1980 Nov 10;255(21):10239–10247. [PubMed] [Google Scholar]
  38. Neuberger M. S., Rajewsky K. Switch from hapten-specific immunoglobulin M to immunoglobulin D secretion in a hybrid mouse cell line. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1138–1142. doi: 10.1073/pnas.78.2.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Randahl H., Elliott G. C., Linn S. DNA-repair reactions by purified HeLa DNA polymerases and exonucleases. J Biol Chem. 1988 Sep 5;263(25):12228–12234. [PubMed] [Google Scholar]
  40. Schatz D. G., Oettinger M. A., Baltimore D. The V(D)J recombination activating gene, RAG-1. Cell. 1989 Dec 22;59(6):1035–1048. doi: 10.1016/0092-8674(89)90760-5. [DOI] [PubMed] [Google Scholar]
  41. Shimizu A., Honjo T. Immunoglobulin class switching. Cell. 1984 Apr;36(4):801–803. doi: 10.1016/0092-8674(84)90029-1. [DOI] [PubMed] [Google Scholar]
  42. Stalker D. M., Mosbaugh D. W., Meyer R. R. Novikoff hepatoma deoxyribonucleic acid polymerase. Purification and properties of a homogeneous beta polymerase. Biochemistry. 1976 Jul 13;15(14):3114–3121. doi: 10.1021/bi00659a027. [DOI] [PubMed] [Google Scholar]
  43. Steele E. J., Pollard J. W. Hypothesis: somatic hypermutation by gene conversion via the error prone DNA----RNA----DNA information loop. Mol Immunol. 1987 Jun;24(6):667–673. doi: 10.1016/0161-5890(87)90049-6. [DOI] [PubMed] [Google Scholar]
  44. Thomas K. R., Olivera B. M. Processivity of DNA exonucleases. J Biol Chem. 1978 Jan 25;253(2):424–429. [PubMed] [Google Scholar]
  45. Wabl M. R., Beck-Engeser G. B., Burrows P. D. Allelic inclusion in the pre-B-cell line 18-81. Proc Natl Acad Sci U S A. 1984 Feb;81(3):867–870. doi: 10.1073/pnas.81.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wagner R., Jr, Meselson M. Repair tracts in mismatched DNA heteroduplexes. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4135–4139. doi: 10.1073/pnas.73.11.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wuerffel R. A., Nathan A. T., Kenter A. L. Detection of an immunoglobulin switch region-specific DNA-binding protein in mitogen-stimulated mouse splenic B cells. Mol Cell Biol. 1990 Apr;10(4):1714–1718. doi: 10.1128/mcb.10.4.1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. von Schwedler U., Jäck H. M., Wabl M. Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature. 1990 May 31;345(6274):452–456. doi: 10.1038/345452a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES