Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1990 Nov;10(11):6079–6083. doi: 10.1128/mcb.10.11.6079

Chromosome organization of the protozoan Trypanosoma brucei.

K Gottesdiener 1, J Garciá-Anoveros 1, M G Lee 1, L H Van der Ploeg 1
PMCID: PMC361410  PMID: 2233733

Abstract

The genome of the protozoan Trypanosoma brucei is known to be diploid. Karyotype analysis has, however, failed to identify homologous chromosomes. Having refined the technique for separating trypanosome chromosomes (L. H. T. Van der Ploeg, C. L. Smith, R. I. Polvere, and K. Gottesdiener, Nucleic Acids Res. 17:3217-3227, 1989), we can now provide evidence for the presence of homologous chromosomes. By determining the chromosomal location of different genetic markers, most of the chromosomes (14, excluding the minichromosomes), could be organized into seven chromosome pairs. In most instances, the putative homologs of a pair differed in size by about 20%. Restriction enzyme analysis of chromosome-sized DNA showed that these chromosome pairs contained large stretches of homologous DNA sequences. From these data, we infer that the chromosome pairs represent homologs. The identification of homologous chromosomes gives valuable insight into the organization of the trypanosome genome, will facilitate the genetic analysis of T. brucei, and suggests the presence of haploid gametes.

Full text

PDF
6083

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst P., van der Ploeg M., van Hoek J. F., Tas J., James J. On the DNA content and ploidy of trypanosomes. Mol Biochem Parasitol. 1982 Jul;6(1):13–23. doi: 10.1016/0166-6851(82)90049-4. [DOI] [PubMed] [Google Scholar]
  2. Corcoran L. M., Thompson J. K., Walliker D., Kemp D. J. Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell. 1988 Jun 3;53(5):807–813. doi: 10.1016/0092-8674(88)90097-9. [DOI] [PubMed] [Google Scholar]
  3. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  4. Gibson W. C., Osinga K. A., Michels P. A., Borst P. Trypanosomes of subgenus Trypanozoon are diploid for housekeeping genes. Mol Biochem Parasitol. 1985 Sep;16(3):231–242. doi: 10.1016/0166-6851(85)90066-0. [DOI] [PubMed] [Google Scholar]
  5. Glass D. J., Polvere R. I., Van der Ploeg L. H. Conserved sequences and transcription of the hsp70 gene family in Trypanosoma brucei. Mol Cell Biol. 1986 Dec;6(12):4657–4666. doi: 10.1128/mcb.6.12.4657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jenni L., Marti S., Schweizer J., Betschart B., Le Page R. W., Wells J. M., Tait A., Paindavoine P., Pays E., Steinert M. Hybrid formation between African trypanosomes during cyclical transmission. Nature. 1986 Jul 10;322(6075):173–175. doi: 10.1038/322173a0. [DOI] [PubMed] [Google Scholar]
  7. Kooter J. M., Borst P. Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res. 1984 Dec 21;12(24):9457–9472. doi: 10.1093/nar/12.24.9457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laird P. W., Kooter J. M., Loosbroek N., Borst P. Mature mRNAs of Trypanosoma brucei possess a 5' cap acquired by discontinuous RNA synthesis. Nucleic Acids Res. 1985 Jun 25;13(12):4253–4266. doi: 10.1093/nar/13.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee M. G., Bihain B. E., Russell D. G., Deckelbaum R. J., Van der Ploeg L. H. Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Sep;10(9):4506–4517. doi: 10.1128/mcb.10.9.4506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marchand M., Kooystra U., Wierenga R. K., Lambeir A. M., Van Beeumen J., Opperdoes F. R., Michels P. A. Glucosephosphate isomerase from Trypanosoma brucei. Cloning and characterization of the gene and analysis of the enzyme. Eur J Biochem. 1989 Sep 15;184(2):455–464. doi: 10.1111/j.1432-1033.1989.tb15038.x. [DOI] [PubMed] [Google Scholar]
  11. Marchand M., Poliszczak A., Gibson W. C., Wierenga R. K., Opperdoes F. R., Michels P. A. Characterization of the genes for fructose-bisphosphate aldolase in Trypanosoma brucei. Mol Biochem Parasitol. 1988 May;29(1):65–75. doi: 10.1016/0166-6851(88)90121-1. [DOI] [PubMed] [Google Scholar]
  12. Mensa-Wilmot K., Hereld D., Englund P. T. Genomic organization, chromosomal localization, and developmentally regulated expression of the glycosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei. Mol Cell Biol. 1990 Feb;10(2):720–726. doi: 10.1128/mcb.10.2.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Michels P. A., Poliszczak A., Osinga K. A., Misset O., Van Beeumen J., Wierenga R. K., Borst P., Opperdoes F. R. Two tandemly linked identical genes code for the glycosomal glyceraldehyde-phosphate dehydrogenase in Trypanosoma brucei. EMBO J. 1986 May;5(5):1049–1056. doi: 10.1002/j.1460-2075.1986.tb04321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paindavoine P., Zampetti-Bosseler F., Pays E., Schweizer J., Guyaux M., Jenni L., Steinert M. Trypanosome hybrids generated in tsetse flies by nuclear fusion. EMBO J. 1986 Dec 20;5(13):3631–3636. doi: 10.1002/j.1460-2075.1986.tb04692.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pologe L. G., Ravetch J. V. A chromosomal rearrangement in a P. falciparum histidine-rich protein gene is associated with the knobless phenotype. 1986 Jul 31-Aug 6Nature. 322(6078):474–477. doi: 10.1038/322474a0. [DOI] [PubMed] [Google Scholar]
  16. Rudenko G., Bishop D., Gottesdiener K., Van der Ploeg L. H. Alpha-amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. EMBO J. 1989 Dec 20;8(13):4259–4263. doi: 10.1002/j.1460-2075.1989.tb08611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  18. Schweizer J., Tait A., Jenni L. The timing and frequency of hybrid formation in African trypanosomes during cyclical transmission. Parasitol Res. 1988;75(2):98–101. doi: 10.1007/BF00932707. [DOI] [PubMed] [Google Scholar]
  19. Sternberg J., Turner C. M., Wells J. M., Ranford-Cartwright L. C., Le Page R. W., Tait A. Gene exchange in African trypanosomes: frequency and allelic segregation. Mol Biochem Parasitol. 1989 May 15;34(3):269–279. doi: 10.1016/0166-6851(89)90056-x. [DOI] [PubMed] [Google Scholar]
  20. Swinkels B. W., Gibson W. C., Osinga K. A., Kramer R., Veeneman G. H., van Boom J. H., Borst P. Characterization of the gene for the microbody (glycosomal) triosephosphate isomerase of Trypanosoma brucei. EMBO J. 1986 Jun;5(6):1291–1298. doi: 10.1002/j.1460-2075.1986.tb04358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tait A., Babiker E. A., Le Ray D. Enzyme variation in Trypanosoma brucei spp. I. Evidence for the sub-speciation of Trypanosoma brucei gambiense. Parasitology. 1984 Oct;89(Pt 2):311–326. doi: 10.1017/s0031182000001335. [DOI] [PubMed] [Google Scholar]
  22. Tait A. Sexual processes in the kinetoplastida. Parasitology. 1983 Apr;86(Pt 4):29–57. doi: 10.1017/s0031182000050836. [DOI] [PubMed] [Google Scholar]
  23. Thomashow L. S., Milhausen M., Rutter W. J., Agabian N. Tubulin genes are tandemly linked and clustered in the genome of trypanosoma brucei. Cell. 1983 Jan;32(1):35–43. doi: 10.1016/0092-8674(83)90494-4. [DOI] [PubMed] [Google Scholar]
  24. Van der Ploeg L. H., Cornelissen A. W., Michels P. A., Borst P. Chromosome rearrangements in Trypanosoma brucei. Cell. 1984 Nov;39(1):213–221. doi: 10.1016/0092-8674(84)90207-1. [DOI] [PubMed] [Google Scholar]
  25. Van der Ploeg L. H., Schwartz D. C., Cantor C. R., Borst P. Antigenic variation in Trypanosoma brucei analyzed by electrophoretic separation of chromosome-sized DNA molecules. Cell. 1984 May;37(1):77–84. doi: 10.1016/0092-8674(84)90302-7. [DOI] [PubMed] [Google Scholar]
  26. Van der Ploeg L. H., Smith C. L., Polvere R. I., Gottesdiener K. M. Improved separation of chromosome-sized DNA from Trypanosoma brucei, stock 427-60. Nucleic Acids Res. 1989 Apr 25;17(8):3217–3227. doi: 10.1093/nar/17.8.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. White T. C., Rudenko G., Borst P. Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Res. 1986 Dec 9;14(23):9471–9489. doi: 10.1093/nar/14.23.9471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zampetti-Bosseler F., Schweizer J., Pays E., Jenni L., Steinert M. Evidence for haploidy in metacyclic forms of Trypanosoma brucei. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6063–6064. doi: 10.1073/pnas.83.16.6063. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES