Skip to main content
Cell Regulation logoLink to Cell Regulation
. 1990 Sep;1(10):771–780. doi: 10.1091/mbc.1.10.771

Developmental regulation of calmodulin-dependent adenylate cyclase activity in an insect endocrine gland.

V Meller 1, S Sakurai 1, L I Gilbert 1
PMCID: PMC361661  PMID: 2099833

Abstract

The insect prothoracic gland produces ecdysteroids that elicit molting and metamorphosis, and neurohormone stimulation of steroidogenesis by this gland involves both Ca2+ and cyclic adenosine monophosphate second messengers. Prothoracic gland adenylate cyclase exhibits a complex Ca2+/calmodulin (CaM) dependence, a component of which requires an activated Gs alpha for expression. A developmental switch in this system has been identified that correlates with a change in both regulation and function of the gland and involves the loss of sensitivity to extracellular Ca2+ at a time approximately concurrent with the loss of Ca2+/CaM sensitivity by the adenylate cyclase. The extent of cholera toxin activation of gland Gs alpha is lowered before this developmental switch. However, no alterations in Gs alpha levels or mobility are detected, suggesting that Gs alpha interaction with another component in the signaling pathway, perhaps adenylate cyclase itself, produces the apparent Ca2+/CaM dependence and influences the ability of toxin to modify Gs alpha.

Full text

PDF
774

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano T., Ogasawara N., Kitajima S., Sano M. Interaction of GTP-binding proteins with calmodulin. FEBS Lett. 1986 Jul 28;203(2):135–138. doi: 10.1016/0014-5793(86)80729-3. [DOI] [PubMed] [Google Scholar]
  2. Bollenbacher W. E., Katahira E. J., O'Brien M., Gilbert L. I., Thomas M. K., Agui N., Baumhover A. H. Insect prothoracicotropic hormone: evidence for two molecular forms. Science. 1984 Jun 15;224(4654):1243–1245. doi: 10.1126/science.6732895. [DOI] [PubMed] [Google Scholar]
  3. Bollenbacher W. E., Smith S. L., Goodman W., Gilbert L. I. Ecdysteroid titer during larval--pupal--adult development of the tobacco hornworm, Manduca sexta. Gen Comp Endocrinol. 1981 Jul;44(3):302–306. doi: 10.1016/0016-6480(81)90005-8. [DOI] [PubMed] [Google Scholar]
  4. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dudai Y., Zvi S. Adenylate cyclase in the Drosophila memory mutant rutabaga displays an altered Ca2+ sensitivity. Neurosci Lett. 1984 Jun 15;47(2):119–124. doi: 10.1016/0304-3940(84)90416-6. [DOI] [PubMed] [Google Scholar]
  6. Gilbert L. I., Combest W. L., Smith W. A., Meller V. H., Rountree D. B. Neuropeptides, second messengers and insect molting. Bioessays. 1988 May;8(5):153–157. doi: 10.1002/bies.950080506. [DOI] [PubMed] [Google Scholar]
  7. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  8. Gilman A. G. The Albert Lasker Medical Awards. G proteins and regulation of adenylyl cyclase. JAMA. 1989 Oct 6;262(13):1819–1825. [PubMed] [Google Scholar]
  9. Gnegy M., Treisman G. Effect of calmodulin on dopamine-sensitive adenylate cyclase activity in rat striatal membranes. Mol Pharmacol. 1981 Mar;19(2):256–263. [PubMed] [Google Scholar]
  10. Harrison J. K., Hewlett G. H., Gnegy M. E. Regulation of calmodulin-sensitive adenylate cyclase by the stimulatory G-protein, Gs. J Biol Chem. 1989 Sep 25;264(27):15880–15885. [PubMed] [Google Scholar]
  11. Jackowski M. M., Johnson R. A., Exton J. H. Calcium regulation of guanine nucleotide activation of hepatic adenylate cyclase. Biochim Biophys Acta. 1980 Jul 15;630(4):497–510. doi: 10.1016/0304-4165(80)90004-5. [DOI] [PubMed] [Google Scholar]
  12. Katada T., Kusakabe K., Oinuma M., Ui M. A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP-binding proteins. Calmodulin-dependent inhibition of the cyclase catalyst by the beta gamma-subunits of GTP-binding proteins. J Biol Chem. 1987 Sep 5;262(25):11897–11900. [PubMed] [Google Scholar]
  13. Krupinski J., Coussen F., Bakalyar H. A., Tang W. J., Feinstein P. G., Orth K., Slaughter C., Reed R. R., Gilman A. G. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science. 1989 Jun 30;244(4912):1558–1564. doi: 10.1126/science.2472670. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Livingstone M. S., Sziber P. P., Quinn W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell. 1984 May;37(1):205–215. doi: 10.1016/0092-8674(84)90316-7. [DOI] [PubMed] [Google Scholar]
  16. Meller V. H., Combest W. L., Smith W. A., Gilbert L. I. A calmodulin-sensitive adenylate cyclase in the prothoracic glands of the tobacco hornworm, Manduca sexta. Mol Cell Endocrinol. 1988 Sep;59(1-2):67–76. doi: 10.1016/0303-7207(88)90196-7. [DOI] [PubMed] [Google Scholar]
  17. Mizoguchi A., Ishizaki H. Prothoracic glands of the saturniid moth Samia cynthia ricini possess a circadian clock controlling gut purge timing. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2726–2730. doi: 10.1073/pnas.79.8.2726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mollner S., Pfeuffer T. Two different adenylyl cyclases in brain distinguished by monoclonal antibodies. Eur J Biochem. 1988 Jan 15;171(1-2):265–271. doi: 10.1111/j.1432-1033.1988.tb13785.x. [DOI] [PubMed] [Google Scholar]
  19. Mumby S. M., Kahn R. A., Manning D. R., Gilman A. G. Antisera of designed specificity for subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci U S A. 1986 Jan;83(2):265–269. doi: 10.1073/pnas.83.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Perez-Reyes E., Cooper D. M. Calmodulin stimulation of the rat cerebral cortical adenylate cyclase is required for the detection of guanine nucleotide- or hormone-mediated inhibition. Mol Pharmacol. 1987 Aug;32(1):212–216. [PubMed] [Google Scholar]
  21. Price S. R., Nightingale M., Tsai S. C., Williamson K. C., Adamik R., Chen H. C., Moss J., Vaughan M. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5488–5491. doi: 10.1073/pnas.85.15.5488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Quan F., Wolfgang W. J., Forte M. A. The Drosophila gene coding for the alpha subunit of a stimulatory G protein is preferentially expressed in the nervous system. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4321–4325. doi: 10.1073/pnas.86.11.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Riddiford L. M. Hormonal control of insect epidermal cell commitment in vitro. Nature. 1976 Jan 15;259(5539):115–117. doi: 10.1038/259115a0. [DOI] [PubMed] [Google Scholar]
  24. Rosenberg G. B., Storm D. R. Immunological distinction between calmodulin-sensitive and calmodulin-insensitive adenylate cyclases. J Biol Chem. 1987 Jun 5;262(16):7623–7628. [PubMed] [Google Scholar]
  25. Simonds W. F., Goldsmith P. K., Woodard C. J., Unson C. G., Spiegel A. M. Receptor and effector interactions of Gs. Functional studies with antibodies to the alpha s carboxyl-terminal decapeptide. FEBS Lett. 1989 Jun 5;249(2):189–194. doi: 10.1016/0014-5793(89)80622-2. [DOI] [PubMed] [Google Scholar]
  26. Smith W. A., Gilbert L. I., Bollenbacher W. E. Calcium-cyclic AMP interactions in prothoracicotropic hormone stimulation of ecdysone synthesis. Mol Cell Endocrinol. 1985 Jan;39(1):71–78. doi: 10.1016/0303-7207(85)90093-0. [DOI] [PubMed] [Google Scholar]
  27. Smith W. A., Gilbert L. I., Bollenbacher W. E. The role of cyclic AMP in the regulation of ecdysone synthesis. Mol Cell Endocrinol. 1984 Oct;37(3):285–294. doi: 10.1016/0303-7207(84)90098-4. [DOI] [PubMed] [Google Scholar]
  28. Tsai S. C., Noda M., Adamik R., Moss J., Vaughan M. Enhancement of choleragen ADP-ribosyltransferase activities by guanyl nucleotides and a 19-kDa membrane protein. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5139–5142. doi: 10.1073/pnas.84.15.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tsuchiya M., Price S. R., Nightingale M. S., Moss J., Vaughan M. Tissue and species distribution of mRNA encoding two ADP-ribosylation factors, 20-kDa guanine nucleotide binding proteins. Biochemistry. 1989 Dec 12;28(25):9668–9673. doi: 10.1021/bi00451a019. [DOI] [PubMed] [Google Scholar]
  30. Vedeckis W. V., Bollenbacher W. E., Gilbert L. I. Insect prothoracic glands: a role for cyclic AMP in the stimulation of alpha-ecdysone secretion. Mol Cell Endocrinol. 1976 Jun-Jul;5(1-2):81–88. doi: 10.1016/0303-7207(76)90072-1. [DOI] [PubMed] [Google Scholar]
  31. Weevers R. D. A lepidopteran saline: effects of inorganic cation concentrations on sensory, reflex and motor responses in a herbivorous insect. J Exp Biol. 1966 Feb;44(1):163–175. doi: 10.1242/jeb.44.1.163. [DOI] [PubMed] [Google Scholar]
  32. Westcott K. R., La Porte D. C., Storm D. R. Resolution of adenylate cyclase sensitive and insensitive to Ca2+ and calcium-dependent regulatory protein (CDR) by CDR-sepharose affinity chromatography. Proc Natl Acad Sci U S A. 1979 Jan;76(1):204–208. doi: 10.1073/pnas.76.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yount R. G., Babcock D., Ballantyne W., Ojala D. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P--N--P linkage. Biochemistry. 1971 Jun 22;10(13):2484–2489. doi: 10.1021/bi00789a009. [DOI] [PubMed] [Google Scholar]

Articles from Cell Regulation are provided here courtesy of American Society for Cell Biology

RESOURCES