Skip to main content
Cell Regulation logoLink to Cell Regulation
. 1991 Mar;2(3):211–218. doi: 10.1091/mbc.2.3.211

Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme.

D L Glick 1, M R Hellmich 1, S Beushausen 1, P Tempst 1, H Bayley 1, F Strumwasser 1
PMCID: PMC361754  PMID: 1650255

Abstract

An egg-specific NADase has been purified from the ovotestis of the marine mollusk Aplysia californica. The enzyme converts NAD to cyclic ADP-ribose (cADPR), which is a potent mobilizer of Ca2+. It is likely that the NADase serves to raise Ca2+ levels in the ova at appropriate times. A 1.2-kb cDNA clone containing the complete coding sequence of the native NADase protein was isolated from an unamplified ovotestis cDNA library and represents the first cloning of an NADase that generates cADPR. In vitro translation studies indicate that the protein initially has a signal sequence that may help to target it to discrete vesicles of the ova in which it is found. There are 12 cysteines in the open reading frame, two of these being in the signal sequence. No part of the sequence has significant similarity to other proteins or known nucleotide binding site consensus sequences. Northern blot analysis of poly(A)+ selected ovotestis RNA has identified an NADase mRNA of 1.85 kb. In situ hybridization analysis of cryostat sections from ovotestis has shown that the NADase mRNA is restricted to the immature ova, although the NADase protein is present in both immature and mature eggs.

Full text

PDF
218

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amar-Costesec A., Prado-Figueroa M., Beaufay H., Nagelkerke J. F., van Berkel T. J. Analytical study of microsomes and isolated subcellular membranes from rat liver. IX. Nicotinamide adenine dinucleotide glycohydrolase: a plasma membrane enzyme prominently found in Kupffer cells. J Cell Biol. 1985 Jan;100(1):189–197. doi: 10.1083/jcb.100.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bause E., Hettkamp H. Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett. 1979 Dec 15;108(2):341–344. doi: 10.1016/0014-5793(79)80559-1. [DOI] [PubMed] [Google Scholar]
  3. Bentley J. K., Tubb D. J., Garbers D. L. Receptor-mediated activation of spermatozoan guanylate cyclase. J Biol Chem. 1986 Nov 15;261(32):14859–14862. [PubMed] [Google Scholar]
  4. Beushausen S., Bergold P., Sturner S., Elste A., Roytenberg V., Schwartz J. H., Bayley H. Two catalytic subunits of cAMP-dependent protein kinase generated by alternative RNA splicing are expressed in Aplysia neurons. Neuron. 1988 Nov;1(9):853–864. doi: 10.1016/0896-6273(88)90133-x. [DOI] [PubMed] [Google Scholar]
  5. Briggs M. S., Gierasch L. M. Molecular mechanisms of protein secretion: the role of the signal sequence. Adv Protein Chem. 1986;38:109–180. doi: 10.1016/s0065-3233(08)60527-6. [DOI] [PubMed] [Google Scholar]
  6. Coggeshall R. E. A cytologic analysis of the bag cell control of egg laying in Aplysia. J Morphol. 1970 Dec;132(4):461–485. doi: 10.1002/jmor.1051320407. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Feramisco J. R., Smart J. E., Burridge K., Helfman D. M., Thomas G. P. Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle. J Biol Chem. 1982 Sep 25;257(18):11024–11031. [PubMed] [Google Scholar]
  9. Glass D. B., Krebs E. G. Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Annu Rev Pharmacol Toxicol. 1980;20:363–388. doi: 10.1146/annurev.pa.20.040180.002051. [DOI] [PubMed] [Google Scholar]
  10. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  11. Hellmich M. R., Strumwasser F. Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 1991 Mar;2(3):193–202. doi: 10.1091/mbc.2.3.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  13. Kim U. H., Rockwood S. F., Kim H. R., Daynes R. A. Membrane-associated NAD+ glycohydrolase from rabbit erythrocytes is solubilized by phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta. 1988 Apr 14;965(1):76–81. doi: 10.1016/0304-4165(88)90153-5. [DOI] [PubMed] [Google Scholar]
  14. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  15. Muller H. M., Muller C. D., Schuber F. NAD+ glycohydrolase, an ecto-enzyme of calf spleen cells. Biochem J. 1983 May 15;212(2):459–464. doi: 10.1042/bj2120459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem. 1985 Mar 10;260(5):2605–2608. [PubMed] [Google Scholar]
  17. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  18. Rusinko N., Lee H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jul 15;264(20):11725–11731. [PubMed] [Google Scholar]
  19. Tempst P., Link A. J., Riviere L. R., Fleming M., Elicone C. Internal sequence analysis of proteins separated on polyacrylamide gels at the submicrogram level: improved methods, applications and gene cloning strategies. Electrophoresis. 1990 Jul;11(7):537–553. doi: 10.1002/elps.1150110704. [DOI] [PubMed] [Google Scholar]
  20. Vangrysperre W., Ampe C., Kersters-Hilderson H., Tempst P. Single active-site histidine in D-xylose isomerase from Streptomyces violaceoruber. Identification by chemical derivatization and peptide mapping. Biochem J. 1989 Oct 1;263(1):195–199. doi: 10.1042/bj2630195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]

Articles from Cell Regulation are provided here courtesy of American Society for Cell Biology

RESOURCES