Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Jun;49(6):977–981. doi: 10.1104/pp.49.6.977

Partial Purification and Properties of l-Glutamine d-Fructose 6-Phosphate Amidotransferase from Phaseolus aureus1

Mahmood Vessal a,2, W Z Hassid a
PMCID: PMC366091  PMID: 16658095

Abstract

l-Glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) was extracted and purified 600-fold by acetone fractionation and diethylaminoethyl cellulose column chromatography from mung bean seeds (Phaseolus aureus). The partially purified enzyme was highly specific for l-glutamine as an amide nitrogen donor, and l-asparagine could not replace it. The enzyme showed a pH optimum in the range of 6.2 to 6.7 in phosphate buffer. Km values of 3.8 mm and 0.5 mm were obtained for d-fructose 6-phosphate and l-glutamine, respectively. The enzyme was competitively inhibited with respect to d-fructose 6-phosphate by uridine diphosphate-N-acetyl-d-glucosamine which had a Ki value of 13 μm. Upon removal of l-glutamine and its replacement by d-fructose 6-phosphate and storage over liquid nitrogen, the enzyme was completely desensitized to inhibition by uridine diphosphate-N-acetyl-d-glucosamine. This indicates that the inhibitor site is distinct from the catalytic site and that uridine diphosphate-N-acetyl-d-glucosamine acts as a feedback inhibitor of the enzyme.

Full text

PDF
978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANGEUX J. P. The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harb Symp Quant Biol. 1961;26:313–318. doi: 10.1101/sqb.1961.026.01.037. [DOI] [PubMed] [Google Scholar]
  2. GHOSH S., BLUMENTHAL H. J., DAVIDSON E., ROSEMAN S. Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem. 1960 May;235:1265–1273. [PubMed] [Google Scholar]
  3. KORNFELD S., KORNFELD R., NEUFELD E. F., O'BRIEN P. J. THE FEEDBACK CONTROL OF SUGAR NUCLEOTIDE BIOSYNTHESIS IN LIVER. Proc Natl Acad Sci U S A. 1964 Aug;52:371–379. doi: 10.1073/pnas.52.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kornfeld R. Studies on L-glutamine D-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J Biol Chem. 1967 Jul 10;242(13):3135–3141. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. MOYED H. S., UMBARGER H. E. Regulation of biosynthetic pathways. Physiol Rev. 1962 Jul;42:444–466. doi: 10.1152/physrev.1962.42.3.444. [DOI] [PubMed] [Google Scholar]
  7. Mayer F. C., Bikel I., Hassid W. Z. Pathway of Uridine Diphosphate N-Acetyl-d-Glucosamine Biosynthesis in Phaseolus aureus. Plant Physiol. 1968 Jul;43(7):1097–1107. doi: 10.1104/pp.43.7.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. POGELL B. M., GRYDER R. M. Enzymatic synthesis of glucosamine 6-phosphate in rat liver. J Biol Chem. 1957 Oct;228(2):701–712. [PubMed] [Google Scholar]
  9. ROE J. H., PAPADOPOULOS N. M. The determination of fructose-6-phosphate and fructose-1,6-diphosphate. J Biol Chem. 1954 Oct;210(2):703–707. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES