Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Sep;50(3):391–395. doi: 10.1104/pp.50.3.391

Studies on Chloroplast Development and Replication in Euglena

III. A Study of the Site of Synthesis of Alkaline Deoxyribonuclease Induced during Chloroplast Development in Euglena gracilis1

James M Egan Jr a,2, Edgar F Carell a
PMCID: PMC366149  PMID: 16658181

Abstract

During chloroplast development in Euglena, the activity of a specific DNase, Euglena alkaline DNase, increases in a manner similar to that of chlorophyll synthesis, but without the lag customarily associated with the early hours of chlorophyll synthesis. The increase in Euglena alkaline DNase activity is not inhibited by chloramphenicol or by streptomycin, but is inhibited by cycloheximide. Euglena alkaline DNase activity is present in a group of aplastidic substrains which contain carotenoids. These results are interpreted to mean that this chloroplast-related DNase is synthesized in the cytoplasm, and that the genetic information for this enzyme is probably nuclear.

It is also shown that different bleached substrains exhibit substantial variation, both in total carotenoids and in Euglena alkaline DNase activity. These results are discussed in terms of the possibility that a cytoplasmic photoreceptor system is influencing the light-induced increase in Euglena alkaline DNase activity.

Full text

PDF
391

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAWERMAN G., CHARGAFF E. Factors involved in the development of chloroplasts in Euglena gracilis. Biochim Biophys Acta. 1959 Jan;31(1):178–186. doi: 10.1016/0006-3002(59)90454-8. [DOI] [PubMed] [Google Scholar]
  2. BRAWERMAN G., EISENSTADT J. M. TEMPLATE AND RIBOSOMAL RIBONUCLEIC ACIDS ASSOCIATED WITH THE CHLOROPLASTS AND THE CYTOPLASM OF EUGLENA GRACILIS. J Mol Biol. 1964 Dec;10:403–411. doi: 10.1016/s0022-2836(64)80061-9. [DOI] [PubMed] [Google Scholar]
  3. Ben-Shaul Y., Markus Y. Effects of chloramphenicol on growth, size distribution, chlorophyll synthesis and ultrastructure of Euglena gracilis. J Cell Sci. 1969 May;4(3):627–644. doi: 10.1242/jcs.4.3.627. [DOI] [PubMed] [Google Scholar]
  4. Carell E. F., Egan J. M., Pratt E. A. Studies on chloroplast development and replication in Euglena. II. Identification of two different deoxyribonucleases. Arch Biochem Biophys. 1970 May;138(1):26–31. doi: 10.1016/0003-9861(70)90279-1. [DOI] [PubMed] [Google Scholar]
  5. Carell E. F. Studies on chloroplast development and replication in Euglena. I. Vitamin B12 and chloroplast replication. J Cell Biol. 1969 May;41(2):431–440. doi: 10.1083/jcb.41.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolphin W. D. Photoinduced Carotenogenesis in Chlorotic Euglena gracilis. Plant Physiol. 1970 Nov;46(5):685–691. doi: 10.1104/pp.46.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drown D., Galloway R. A. A study of the mechanism of action of streptomycin in Euglena gracilis. Arch Mikrobiol. 1969;68(4):377–386. doi: 10.1007/BF00408861. [DOI] [PubMed] [Google Scholar]
  8. EDELMAN M., SCHIFF J. A., EPSTEIN H. T. STUDIES OF CHLOROPLAST DEVELOPMENT IN EUGLENA. XII. TWO TYPES OF SATELLITE DNA. J Mol Biol. 1965 Apr;11:769–774. doi: 10.1016/s0022-2836(65)80034-1. [DOI] [PubMed] [Google Scholar]
  9. Edelman M., Epstein H. T., Schiff J. A. Isolation and characterization of DNA from the mitochondrial fraction of Euglena. J Mol Biol. 1966 Jun;17(2):463–469. doi: 10.1016/s0022-2836(66)80156-0. [DOI] [PubMed] [Google Scholar]
  10. Filner P., Varner J. E., Wray J. L. Environmental or developmental changes cause many enzyme activities of higher plants to rise or fall. Science. 1969 Jul 25;165(3891):358–367. doi: 10.1126/science.165.3891.358. [DOI] [PubMed] [Google Scholar]
  11. Holowinsky A. W., Schiff J. A. Events surrounding the early development of Euglena chloroplasts. I. Induction by preillumination. Plant Physiol. 1970 Mar;45(3):339–347. doi: 10.1104/pp.45.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kirk J. T., Allen R. L. Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun. 1965 Dec 21;21(6):523–530. doi: 10.1016/0006-291x(65)90516-4. [DOI] [PubMed] [Google Scholar]
  13. LEHMAN I. R. The deoxyribonucleases of Escherichia coli. I. Purification and properties of a phosphodiesterase. J Biol Chem. 1960 May;235:1479–1487. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lyman H. Specific inhibition of chloroplast replication in Euglena gracilis by nalidixic acid. J Cell Biol. 1967 Dec;35(3):726–730. doi: 10.1083/jcb.35.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OLESON A. E., KOERNER J. F. A DEOXYRIBONUCLEASE INDUCED BY INFECTION WITH BACTERIOPHAGE T2. J Biol Chem. 1964 Sep;239:2935–2943. [PubMed] [Google Scholar]
  17. POGO B. G., POGO A. O. INHIBITION BY CHLORAMPHENICOL OF CHLOROPHYLL AND PROTEIN SYNTHESIS AND GROWTH IN EUGLENA GRACILIS. J Protozool. 1965 Feb;12:96–100. doi: 10.1111/j.1550-7408.1965.tb01820.x. [DOI] [PubMed] [Google Scholar]
  18. Reger B. J., Fairfield S. A., Epler J. L., Barnett W. E. Identification and origin of some chloroplast aminoacyl-tRNA synthetases and tRNAs. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1207–1213. doi: 10.1073/pnas.67.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stern A. I., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development. Plant Physiol. 1964 Mar;39(2):220–226. doi: 10.1104/pp.39.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ziebur N. K., Shrift A. Response to selenium by callus cultures derived from astragalus species. Plant Physiol. 1971 Apr;47(4):545–550. doi: 10.1104/pp.47.4.545. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES