Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 May;51(5):833–838. doi: 10.1104/pp.51.5.833

Biochemical Studies on Development of Mitochondria in Pea Cotyledons during the Early Stage of Germination

Effects of Antibiotics on the Development

Yoshihiko Nawa 1, Tadashi Asahi 1
PMCID: PMC366358  PMID: 16658422

Abstract

l-Leucine-U-14C was incorporated into mitochondrial protein in pea (Pisum sativum var. Alaska) cotyledons during the imbibing stages. Incorporation was almost completely inhibited by cycloheximide but not by chloramphenicol. Both antibiotics did not affect increases in mitochondrial activities and components of the cotyledons during imbibition. Therefore, mitochondrial development seems to be achieved by a transfer of protein pre-existing in the cytoplasm into the mitochondria rather than by de novo synthesis of mitochondrial protein. Cycloheximide stimulated an increase in bile saltsoluble protein of mitochondria in imbibing pea cotyledons. The recovery of cytochrome oxidase activity after sucrose density gradient centrifugation was enhanced, and the morphological properties of mitochondria were altered by cycloheximide.

Full text

PDF
834

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AKAZAWA T., BEEVERS H. Mitochondria in the endosperm of the germinating castor bean; a developmental study. Biochem J. 1957 Sep;67(1):115–118. doi: 10.1042/bj0670115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashwell M., Work T. S. The biogenesis of mitochondria. Annu Rev Biochem. 1970;39:251–290. doi: 10.1146/annurev.bi.39.070170.001343. [DOI] [PubMed] [Google Scholar]
  3. Barath Z., Küntzel H. Cooperation of mitochondrial and nuclear genes specifying the mitochondrial genetic apparatus in Neurospora crassa. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1371–1374. doi: 10.1073/pnas.69.6.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breidenbach R. W., Castelfranco P., Criddle R. S. Biogenesis of Mitochondria in Germinating Peanut Cotyledons II. Changes in Cytochromes and Mitochondrial DNA. Plant Physiol. 1967 Aug;42(8):1035–1041. doi: 10.1104/pp.42.8.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breidenbach R. W., Castelfranco P., Peterson C. Biogenesis of mitochondria in germinating peanut cotyledons. Plant Physiol. 1966 May;41(5):803–809. doi: 10.1104/pp.41.5.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHANCE B., WILLIAMS G. R. A simple and rapid assay of oxidative phosphorylation. Nature. 1955 Jun 25;175(4469):1120–1121. doi: 10.1038/1751120a0. [DOI] [PubMed] [Google Scholar]
  7. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  8. Cherry J. H. Nucleic Acid, Mitochondria, & Enzyme Changes in Cotyledons of Peanut Seeds during Germination. Plant Physiol. 1963 Jul;38(4):440–446. doi: 10.1104/pp.38.4.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellis R. J., Macdonald I. R. Specificity of cycloheximide in higher plant systems. Plant Physiol. 1970 Aug;46(2):227–232. doi: 10.1104/pp.46.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  11. Hallman M., Kankare P. Cardiolipin and cytochrome AA 3 in intact liver mitochondria of rats. Evidence of successive formation of inner membrane components. Biochem Biophys Res Commun. 1971 Nov;45(4):1004–1010. doi: 10.1016/0006-291x(71)90437-2. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Mersmann H. J., Goodman J., Houk J. M., Anderson S. Studies on the biochemistry of mitochondria and cell morphology in the neonatal swine hepatocyte. J Cell Biol. 1972 May;53(2):335–347. doi: 10.1083/jcb.53.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller C. O. Modification of the cytokinin promotion of deoxyisoflavone synthesis in soybean tissue. Plant Physiol. 1972 Mar;49(3):310–313. doi: 10.1104/pp.49.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nawa Y., Asahi T. Rapid Development of Mitochondria in Pea Cotyledons during the Early Stage of Germination. Plant Physiol. 1971 Dec;48(6):671–674. doi: 10.1104/pp.48.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neal W. K., Hoffmann H. P., Avers C. J., Price C. A. Derepression of mitochondria in yeast spheroplasts. Biochem Biophys Res Commun. 1970 Feb 6;38(3):414–422. doi: 10.1016/0006-291x(70)90729-1. [DOI] [PubMed] [Google Scholar]
  17. Pollak J. K., Munn E. A. The isolation by isopycnic density-gradient centrifugation of two mitochondrial populations from livers of embryonic and fed and starved adult rats. Biochem J. 1970 May;117(5):913–919. doi: 10.1042/bj1170913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ross C., Murray M. G. Development of Pyrimidine-metabolizing Enzymes in Cotyledons of Germinating Peas. Plant Physiol. 1971 Nov;48(5):626–630. doi: 10.1104/pp.48.5.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHATZ G. THE ISOLATION OF POSSIBLE MITOCHONDRIAL PRECURSOR STRUCTURES FROM AEROBICALLY GROWN BAKER'S YEAST. Biochem Biophys Res Commun. 1963 Aug 20;12:448–451. doi: 10.1016/0006-291x(63)90313-9. [DOI] [PubMed] [Google Scholar]
  21. Siegel M. R., Sisler H. D. Site of action of cycloheximide in cells of Saccharomyces pastorianus. 3. Further studies on the mechanism of action and the mechanism of resistance in saccharomyces species. Biochim Biophys Acta. 1965 Aug 10;103(4):558–567. [PubMed] [Google Scholar]
  22. Solomos T., Malhotra S. S., Prasad S., Malhotra S. K., Spencer M. Biochemical and structural changes in mitochondria and other cellular components of pea cotyledons during germination. Can J Biochem. 1972 Jul;50(7):725–737. doi: 10.1139/o72-101. [DOI] [PubMed] [Google Scholar]
  23. Tanaka K., Teraoka H., Nagira T., Tamaki M. [14C]erythromycin-ribosome complex formation and non-enzymatic binding of aminoacyl-transfer RNA to ribosome-messenger RNA complex. Biochim Biophys Acta. 1966 Aug 17;123(2):435–437. doi: 10.1016/0005-2787(66)90300-5. [DOI] [PubMed] [Google Scholar]
  24. Young J. L., Huang R. C., Vanecko S., Marks J. D., Varner J. E. Conditions Affecting Enzyme Synthesis in Cotyledons of Germinating Seeds. Plant Physiol. 1960 May;35(3):288–292. doi: 10.1104/pp.35.3.288. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES