Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Jul;52(1):17–22. doi: 10.1104/pp.52.1.17

Metabolism of Separated Leaf Cells

III. Effects of Calcium and Ammonium on Product Distribution During Photosynthesis with Cotton Cells 1

D W Rehfeld a,2, R G Jensen a,3
PMCID: PMC366430  PMID: 16658491

Abstract

Separated mesophyll cells from cotton (Gossypium hirsutum var. Stoneville 1613 Glandless) were isolated with pectinase and mechanical agitation. The separated cells had rates of light-dependent CO2 fixation between 50 to 100 μmoles CO2 per mg chlorophyll per hour. The presence of Ca2+ in the incubation medium did not significantly affect the type of photosynthetic products formed, but 2 mm Ca2+ did cause a 50% decrease in the appearance of photosynthetic products in the incubation medium. The movement of all types of products (sugars, organic, and amino acids) out of the cells was reduced similarly by the Ca2+. Light had no affect on the movement of products out of the cells, whereas 1 mm ethylenediaminetetra-acetate greatly increased the movement. The addition of 1.6 mm NH4Cl to the cell suspensions caused a large increase in the amount of fixed 14C appearing in the amino acid fraction and a decrease in the sugar fraction. These metabolic changes in the cells were reflected in the movement of products out of the cells so that the incubation medium also contained a larger amount of label in amino acids and a smaller amount in sucrose. Although the cell plasma membrane restricted the movement of soluble products, it did not discriminate significantly between the types of products moved.

Full text

PDF
19

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANVIN D. T., BEEVERS H. Sucrose synthesis from acetate in the germinating castor bean: kinetics and pathway. J Biol Chem. 1961 Apr;236:988–995. [PubMed] [Google Scholar]
  2. Francki R. I., Zaitlin M., Jensen R. G. Metabolism of Separated Leaf Cells: II. Uptake and Incorporation of Protein and Ribonucleic Acid Precursors by Tobacco Cells. Plant Physiol. 1971 Jul;48(1):14–18. doi: 10.1104/pp.48.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jensen R. G., Francki R. I., Zaitlin M. Metabolism of separated leaf cells: I. Preparation of photosynthetically active cells from tobacco. Plant Physiol. 1971 Jul;48(1):9–13. doi: 10.1104/pp.48.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kanazawa T., Kanazawa K., Kirk M. R., Bassham J. A. Regulatory effects of ammonia on carbon metabolism in Chlorella pyrenoidosa during photosynthesis and respiration. Biochim Biophys Acta. 1972 Mar 16;256(3):656–669. doi: 10.1016/0005-2728(72)90201-0. [DOI] [PubMed] [Google Scholar]
  6. Kanazawa T., Kirk M. R., Bassham J. A. Regulatory effects of ammonia on carbon metabolism in photosynthesizing Chlorella pyrenoidosa. Biochim Biophys Acta. 1970 Jun 30;205(3):401–408. doi: 10.1016/0005-2728(70)90106-4. [DOI] [PubMed] [Google Scholar]
  7. Klepper L., Flesher D., Hageman R. H. Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol. 1971 Nov;48(5):580–590. doi: 10.1104/pp.48.5.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Radin J. W. In vivo assay of nitrate reductase in cotton leaf discs: effect of oxygen and ammonium. Plant Physiol. 1973 Feb;51(2):332–336. doi: 10.1104/pp.51.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES