Abstract
The relationship of phototransformable protochlorophyllide to photoinactive protochlorophyllide has been studied in primary leaves of 7- to 9-day-old dark-grown bean (Phaseolus vulgaris L. var. Red Kidney) seedlings. Various levels of photoinactive protochlorophyllide, absorbing at 633 nm in vivo, were induced by administering δ-aminolevulinic acid to the leaves in darkness. Phototransformable protochlorophyllide, absorbing at 650 nm in vivo, was subsequently transformed to chlorophyllide by a light flash, and the regeneration of the photoactive pigment was followed by monitoring the absorbance increase at 650 nm in vivo. A small increase in the level of protochlorophyllide633 causes a marked increase in the extent of regeneration of protochlorphyllide650 following a flash. High levels of the inactive pigment species, however, retard the capacity to reform photoactive protochlorophyllide. A nonstoichiometric and kinetically complex decrease in absorbance at 633 nm in vivo accompanied the absorbance increase at 650 nm. The half-time for protochlorophyllide650 regeneration in control leaves was found to be three times longer than the half-time for conversion of chlorophyllide678 to chlorophyllide683 at 22 C. The results are consistent with the hypothesis that protochlorophyllide633 is a direct precursor of protochlorophyllide650 and that the protein moiety of the protochlorophyllide holochrome acts as a “photoenzyme” in the conversion of protochlorophylide to chlorophyllide.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butler W. L., Briggs W. R. The relation between structure and pigments during the first stages of proplastid greening. Biochim Biophys Acta. 1966 Jan 4;112(1):45–53. doi: 10.1016/s0926-6585(96)90006-0. [DOI] [PubMed] [Google Scholar]
- Gassman M. L. A Reversible Conversion of Phototransformable Protochlorophyll(ide)(656) to Photoinactive Protochlorophyll(ide)(656) by Hydrogen Sulfide in Etiolated Bean Leaves. Plant Physiol. 1973 Jan;51(1):139–145. doi: 10.1104/pp.51.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gassman M., Bogorad L. Studies on the regeneration of protochlorophyllide after brief illumination of etiolated bean leaves. Plant Physiol. 1967 Jun;42(6):781–784. doi: 10.1104/pp.42.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gassman M., Granick S., Mauzerall D. A rapid spectral change in etiolated red kidney bean leaves following phototransformation of protochlorophyllide. Biochem Biophys Res Commun. 1968 Jul 26;32(2):295–300. doi: 10.1016/0006-291x(68)90384-7. [DOI] [PubMed] [Google Scholar]
- Godnev T. N., Raskin V. I., Akulovich N. K., Orlovskaia K. I. Prevrashchenie protokhlorofill-golokhroma v monokhromaticheskom svete pri nachal'nom preobladanii formy 634. Dokl Akad Nauk SSSR. 1968 Sep 21;182(3):709–711. [PubMed] [Google Scholar]
- Granick S., Gassman M. Rapid regeneration of protochlorophyllide(650). Plant Physiol. 1970 Feb;45(2):201–205. doi: 10.1104/pp.45.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henningsen K. W. Macromolecular physiology of plastids. VI. Changes in membrane structure associated with shifts in the absorption maxima of the chlorophyllous pigments. J Cell Sci. 1970 Nov;7(3):587–621. doi: 10.1242/jcs.7.3.587. [DOI] [PubMed] [Google Scholar]
- Kahn A., Boardman N. K., Thorne S. W. Energy transfer between protochlorophyllide molecules: evidence for multiple chromophores in the photoactive protochlorophyllide-protein complex vivo and in vitro. J Mol Biol. 1970 Feb 28;48(1):85–101. doi: 10.1016/0022-2836(70)90220-2. [DOI] [PubMed] [Google Scholar]
- Mathis P., Sauer K. Chlorophyll Formation in Greening Bean Leaves during the Early Stages. Plant Physiol. 1973 Jan;51(1):115–119. doi: 10.1104/pp.51.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray A. E., Klein A. O. Relationship between Photoconvertible and Nonphotoconvertible Protochlorophyllides. Plant Physiol. 1971 Oct;48(4):383–388. doi: 10.1104/pp.48.4.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nadler K., Granick S. Controls on chlorophyll synthesis in barley. Plant Physiol. 1970 Aug;46(2):240–246. doi: 10.1104/pp.46.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Süzer S., Sauer K. The sites of photoconversion of protochlorophyllide to chlorophyllide in barley seedlings. Plant Physiol. 1971 Jul;48(1):60–63. doi: 10.1104/pp.48.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]