Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1985 May;5(5):1093–1099. doi: 10.1128/mcb.5.5.1093

Processing of the precursor to a chloroplast ribosomal protein made in the cytosol occurs in two steps, one of which depends on a protein made in the chloroplast.

R J Schmidt, N W Gillham, J E Boynton
PMCID: PMC366826  PMID: 4000118

Abstract

In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.

Full text

PDF
1097

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Douce R., Block M. A., Dorne A. J., Joyard J. The plastid envelope membranes: their structure, composition, and role in chloroplast biogenesis. Subcell Biochem. 1984;10:1–84. doi: 10.1007/978-1-4613-2709-7_1. [DOI] [PubMed] [Google Scholar]
  2. Ellis R. J. Chloroplast protein synthesis: principles and problems. Subcell Biochem. 1983;9:237–261. doi: 10.1007/978-1-4613-3533-7_2. [DOI] [PubMed] [Google Scholar]
  3. Feierabend J., Wildner G. Formation of the small subunit in the absence of the large subunit of ribulose 1,5-bisphosphate carboxylase in 70 S ribosome-deficient rye leaves. Arch Biochem Biophys. 1978 Mar;186(2):283–291. doi: 10.1016/0003-9861(78)90437-x. [DOI] [PubMed] [Google Scholar]
  4. Gasser S. M., Ohashi A., Daum G., Böhni P. C., Gibson J., Reid G. A., Yonetani T., Schatz G. Imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proc Natl Acad Sci U S A. 1982 Jan;79(2):267–271. doi: 10.1073/pnas.79.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Martin N. C., Chiang K. S., Goodenough U. W. Turnover of chloroplast and cytoplasmic ribosomes during gametogenesis in Chlamydomonas reinhardi. Dev Biol. 1976 Jul 15;51(2):190–201. doi: 10.1016/0012-1606(76)90137-8. [DOI] [PubMed] [Google Scholar]
  6. Mishkind M. L., Wessler S. R., Schmidt G. W. Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5-bisphosphate carboxylase small subunit of Chlamydomonas. J Cell Biol. 1985 Jan;100(1):226–234. doi: 10.1083/jcb.100.1.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ohashi A., Gibson J., Gregor I., Schatz G. Import of proteins into mitochondria. The precursor of cytochrome c1 is processed in two steps, one of them heme-dependent. J Biol Chem. 1982 Nov 10;257(21):13042–13047. [PubMed] [Google Scholar]
  8. Robinson C., Ellis R. J. Transport of proteins into chloroplasts. The precursor of small subunit of ribulose bisphosphate carboxylase is processed to the mature size in two steps. Eur J Biochem. 1984 Jul 16;142(2):343–346. doi: 10.1111/j.1432-1033.1984.tb08292.x. [DOI] [PubMed] [Google Scholar]
  9. Sabatini D. D., Kreibich G., Morimoto T., Adesnik M. Mechanisms for the incorporation of proteins in membranes and organelles. J Cell Biol. 1982 Jan;92(1):1–22. doi: 10.1083/jcb.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schmidt R. J., Myers A. M., Gillham N. W., Boynton J. E. Chloroplast ribosomal proteins of Chlamydomonas synthesized in the cytoplasm are made as precursors. J Cell Biol. 1984 Jun;98(6):2011–2018. doi: 10.1083/jcb.98.6.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schmidt R. J., Myers A. M., Gillham N. W., Boynton J. E. Immunological similarities between specific chloroplast ribosomal proteins from Chlamydomonas reinhardtii and ribosomal proteins from Escherichia coli. Mol Biol Evol. 1984 Jul;1(4):317–334. doi: 10.1093/oxfordjournals.molbev.a040320. [DOI] [PubMed] [Google Scholar]
  12. Schmidt R. J., Richardson C. B., Gillham N. W., Boynton J. E. Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas. J Cell Biol. 1983 May;96(5):1451–1463. doi: 10.1083/jcb.96.5.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Siersma P. W., Chiang K. S. Conservation and degradation of cytoplasmic and chloroplast ribosomes in Chlamydomonas reinhardtii. J Mol Biol. 1971 May 28;58(1):167–185. doi: 10.1016/0022-2836(71)90239-7. [DOI] [PubMed] [Google Scholar]
  14. Silhavy T. J., Benson S. A., Emr S. D. Mechanisms of protein localization. Microbiol Rev. 1983 Sep;47(3):313–344. doi: 10.1128/mr.47.3.313-344.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sueoka N. MITOTIC REPLICATION OF DEOXYRIBONUCLEIC ACID IN CHLAMYDOMONAS REINHARDI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):83–91. doi: 10.1073/pnas.46.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES