Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Sep;54(3):250–256. doi: 10.1104/pp.54.3.250

Phosphate Absorption Rates and Adenosine 5′-Triphosphate Concentrations in Corn Root Tissue 1,2

Willy Lin a, J B Hanson a
PMCID: PMC367392  PMID: 16658869

Abstract

The correlations between ATP concentration in corn (Zea mays) root tissue and the rate of phosphate absorption by the tissue have been examined. Experimental variation was secured with 2,4-dinitrophenol, oligomycin, mersalyl, l-ethionine, 2-deoxyglucose, N2 gassing and inhibition of protein synthesis. It is concluded that ATP could be the energy source for potassium phosphate absorption, but only if the transport mechanism possesses certain properties: oligomycin-sensitivity; creation of a proton gradient susceptible to collapse by uncouplers; phosphate transport via a mersalyl-sensitive Pi-OH transporter; good activity at energy charge as low as 0.4; short enzymatic half-life for the ATPase or phosphate transporter; a linked mechanism for K+-H+ exchange transport, possibly electrogenic.

Full text

PDF
256

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. R., Eckermann G., Grant M., Robertson R. N. Salt accumulation and adenosine triphosphate in carrot xylem tissue. Proc Natl Acad Sci U S A. 1966 Mar;55(3):560–564. doi: 10.1073/pnas.55.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bledsoe C., Cole C. V., Ross C. Oligomycin inhibition of phosphate uptake and ATP labeling in excised maize roots. Plant Physiol. 1969 Jul;44(7):1040–1044. doi: 10.1104/pp.44.7.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ching T. M., Ching K. K. Content of adenosine phosphates and adenylate energy charge in germinating ponderosa pine seeds. Plant Physiol. 1972 Nov;50(5):536–540. doi: 10.1104/pp.50.5.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cram W. J. Respiration and energy-dependent movements of chloride at plasmalemma and tonoplast of carrot root cells. Biochim Biophys Acta. 1969 Mar 11;173(2):213–222. doi: 10.1016/0005-2736(69)90105-9. [DOI] [PubMed] [Google Scholar]
  6. ETHERTON B., HIGINBOTHAM N. Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science. 1960 Feb 12;131(3398):409–410. doi: 10.1126/science.131.3398.409. [DOI] [PubMed] [Google Scholar]
  7. Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanson J. B., Bertagnolli B. L., Shepherd W. D. Phosphate-induced Stimulation of Acceptorless Respiration in Corn Mitochondria. Plant Physiol. 1972 Sep;50(3):347–354. doi: 10.1104/pp.50.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higinbotham N. The Possible Role of Adenosine Triphosphate in Rubidium Absorption as Revealed by the Influence of External Phosphate, Dinitrophenol and Arsenate. Plant Physiol. 1959 Nov;34(6):645–650. doi: 10.1104/pp.34.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hodges T. K., Leonard R. T., Bracker C. E., Keenan T. W. Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3307–3311. doi: 10.1073/pnas.69.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson P. C., Hendricks S. B., Vasta B. M. Phosphorylation by Barley Root Mitochondria & Phosphate Absorption by Barley Roots. Plant Physiol. 1962 Jan;37(1):8–17. doi: 10.1104/pp.37.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lai Y. F., Thompson J. E. Effects of Germination on NA-K-stimulated Adenosine 5'-Triphosphatase and ATP-dependent Ion Transport of Isolated Membranes from Cotyledons. Plant Physiol. 1972 Oct;50(4):452–457. doi: 10.1104/pp.50.4.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leonard R. T., Hansen D., Hodges T. K. Membrane-bound Adenosine Triphosphatase Activities of Oat Roots. Plant Physiol. 1973 Apr;51(4):749–754. doi: 10.1104/pp.51.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leonard R. T., Hanson J. B. Increased Membrane-bound Adenosine Triphosphatase Activity Accompanying Development of Enhanced Solute Uptake in Washed Corn Root Tissue. Plant Physiol. 1972 Mar;49(3):436–440. doi: 10.1104/pp.49.3.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leonard R. T., Hanson J. B. Induction and development of increased ion absorption in corn root tissue. Plant Physiol. 1972 Mar;49(3):430–435. doi: 10.1104/pp.49.3.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leonard R. T., Hodges T. K. Characterization of Plasma Membrane-associated Adenosine Triphosphase Activity of Oat Roots. Plant Physiol. 1973 Jul;52(1):6–12. doi: 10.1104/pp.52.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MCCOMB R. B., YUSHOK W. D. METABOLISM OF ASCITES TUMOR CELLS. IV. ENZYMATIC REACTIONS INVOLVED IN ADENOSINETRIPHOSPHATE DEGRADATION INDUCED BY 2-DEOXYGLUCOSE. Cancer Res. 1964 Feb;24:198–205. [PubMed] [Google Scholar]
  18. MacRobbie E. A. The active transport of ions in plant cells. Q Rev Biophys. 1970 Aug;3(3):251–294. doi: 10.1017/s0033583500004741. [DOI] [PubMed] [Google Scholar]
  19. Mitchell P. Hypothesis: cation-translocating adenosine triphosphatase models: how direct is the participation of adenosine triphosphate and its hydrolysis products in cation translocation? FEBS Lett. 1973 Jul 15;33(3):267–274. doi: 10.1016/0014-5793(73)80209-1. [DOI] [PubMed] [Google Scholar]
  20. ROBERTSON R. N., WILKINS M. J., WEEKS D. C. Studies in the metabolism of plant cells. IX. The effects of 2,4-dinitrophenol on salt accumulation and salt respiration. Aust J Sci Res B. 1951 Aug;4(3):248–264. doi: 10.1071/bi9510248. [DOI] [PubMed] [Google Scholar]
  21. Racker E. Resolution and reconstitution of the inner mitochondrial membrane. Fed Proc. 1967 Sep;26(5):1335–1340. [PubMed] [Google Scholar]
  22. Slayman C. L. Movement of ions and electrogenesis in microorganisms. Am Zool. 1970 Aug;10(3):377–392. doi: 10.1093/icb/10.3.377. [DOI] [PubMed] [Google Scholar]
  23. WHITTAM R., WHEELER K. P., BLAKE A. OLIGOMYCIN AND ACTIVE TRANSPORT REACTIONS IN CELL MEMBRANES. Nature. 1964 Aug 15;203:720–724. doi: 10.1038/203720a0. [DOI] [PubMed] [Google Scholar]
  24. Weeks D. P., Baxter R. Specific inhibition of peptide-chain initiation by 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide. Biochemistry. 1972 Aug 1;11(16):3060–3064. doi: 10.1021/bi00766a018. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES