Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Oct;54(4):427–436. doi: 10.1104/pp.54.4.427

Plant Photobiology in the Last Half-Century 1

Arthur W Galston a
PMCID: PMC367430  PMID: 16658905

Full text

PDF
434

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRIGGS W. R., TOCHER R. D., WILSON J. F. Phototropic auxin redistribution in corn coleoptiles. Science. 1957 Aug 2;126(3266):210–212. doi: 10.1126/science.126.3266.210. [DOI] [PubMed] [Google Scholar]
  2. BUTLER W. L., SIEGELMAN H. W., MILLER C. O. DENATURATION OF PHYTOCHROME. Biochemistry. 1964 Jun;3:851–857. doi: 10.1021/bi00894a022. [DOI] [PubMed] [Google Scholar]
  3. Boisard J., Marmé D., Briggs W. R. In Vivo Properties of Membrane-bound Phytochrome. Plant Physiol. 1974 Sep;54(3):272–276. doi: 10.1104/pp.54.3.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borthwick H. A., Hendricks S. B., Parker M. W., Toole E. H., Toole V. K. A Reversible Photoreaction Controlling Seed Germination. Proc Natl Acad Sci U S A. 1952 Aug;38(8):662–666. doi: 10.1073/pnas.38.8.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borthwick H. A., Hendricks S. B. Photoperiodism in Plants. Science. 1960 Oct 28;132(3435):1223–1228. doi: 10.1126/science.132.3435.1223. [DOI] [PubMed] [Google Scholar]
  6. Briggs W. R., Chon H. P. The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Plant Physiol. 1966 Sep;41(7):1159–1166. doi: 10.1104/pp.41.7.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Briggs W. R. Long-lived Intermediates in Phytochrome Transformation II: In Vitro and In Vivo Studies. Plant Physiol. 1969 Aug;44(8):1089–1094. doi: 10.1104/pp.44.8.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Briggs W. R., Siegelman H. W. Distribution of Phytochrome in Etiolated Seedlings. Plant Physiol. 1965 Sep;40(5):934–941. doi: 10.1104/pp.40.5.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Butler W. L., Norris K. H., Siegelman H. W., Hendricks S. B. DETECTION, ASSAY, AND PRELIMINARY PURIFICATION OF THE PIGMENT CONTROLLING PHOTORESPONSIVE DEVELOPMENT OF PLANTS. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1703–1708. doi: 10.1073/pnas.45.12.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cleland R. Auxin-induced hydrogen ion excretion from Avena coleoptiles. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3092–3093. doi: 10.1073/pnas.70.11.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Correll D. L., Edwards J. L. The aggregation States of phytochrome from etiolated rye and oat seedings. Plant Physiol. 1970 Jan;45(1):81–85. doi: 10.1104/pp.45.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Delbrück M., Shropshire W. Action and Transmission Spectra of Phycomyces. Plant Physiol. 1960 Mar;35(2):194–204. doi: 10.1104/pp.35.2.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Durst F., Mohr H. Phytochrome-mediated induction of enzyme synthesis in mustard seedlings(Sinapis alba L.). Naturwissenschaften. 1966 Oct;53(20):531–532. doi: 10.1007/BF00600655. [DOI] [PubMed] [Google Scholar]
  14. GALSTON A. W. Riboflavin, light, and the growth of plants. Science. 1950 Jun 9;111(2893):619–624. doi: 10.1126/science.111.2893.619. [DOI] [PubMed] [Google Scholar]
  15. GORTNER W. A., KENT M. Indoleacetic acid oxidase and an inhibitor in pineapple tissue. J Biol Chem. 1953 Oct;204(2):593–603. [PubMed] [Google Scholar]
  16. Galston A. W., Baker R. S. Inactivation of Enzymes by Visible Light in the Presence of Riboflavin. Science. 1949 May 13;109(2837):485–486. doi: 10.1126/science.109.2837.485. [DOI] [PubMed] [Google Scholar]
  17. Galston A. W., Kaur R. AN EFFECT OF AUXINS ON THE HEAT COAGULABILITY OF THE PROTEINS OF GROWING PLANT CELLS. Proc Natl Acad Sci U S A. 1959 Nov;45(11):1587–1590. doi: 10.1073/pnas.45.11.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Galston A. W. Microspectrophotometric evidence for phytochrome in plant nuclei. Proc Natl Acad Sci U S A. 1968 Oct;61(2):454–460. doi: 10.1073/pnas.61.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Galston A. W. Riboflavin-Sensitized Photoöxidation of Indoleacetic Acid and Related Compounds. Proc Natl Acad Sci U S A. 1949 Jan;35(1):10–17. [PMC free article] [PubMed] [Google Scholar]
  20. Goldsmith M. H., Wilkins M. B. Movement of Auxin in Coleoptiles of Zea mays L. during Geotropic Stimulation. Plant Physiol. 1964 Mar;39(2):151–162. doi: 10.1104/pp.39.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hand D. B., Guthrie E. S., Sharp P. F. EFFECT OF OXYGEN LIGHT AND LACTO-FLAVIN ON THE OXIDATION OF VITAMIN C IN MILK. Science. 1938 May 13;87(2263):439–441. doi: 10.1126/science.87.2263.439-a. [DOI] [PubMed] [Google Scholar]
  22. Hendricks S. B., Borthwick H. A. The function of phytochrome in regulation of plant growth. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2125–2130. doi: 10.1073/pnas.58.5.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hopkins D. W., Butler W. L. Immunochemical and spectroscopic evidence for protein conformational changes in phytochrome transformations. Plant Physiol. 1970 May;45(5):567–570. doi: 10.1104/pp.45.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jaffe M. J. Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine. Plant Physiol. 1970 Dec;46(6):768–777. doi: 10.1104/pp.46.6.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jaffe M. J. Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science. 1968 Nov 29;162(3857):1016–1017. doi: 10.1126/science.162.3857.1016. [DOI] [PubMed] [Google Scholar]
  26. Kasemir H., Mohr H. Involvement of Acetylcholine in Phytochrome-mediated Processes. Plant Physiol. 1972 Mar;49(3):453–454. doi: 10.1104/pp.49.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kroeger H., Lezzi M. Regulation of gene action in insect development. Annu Rev Entomol. 1966;11:1–22. doi: 10.1146/annurev.en.11.010166.000245. [DOI] [PubMed] [Google Scholar]
  28. Linschitz H., Kasche V. KINETICS OF PHYTOCHROME CONVERSION: MULTIPLE PATHWAYS IN THE P(r) TO P(fr) REACTION, AS STUDIED BY DOUBLE-FLASH TECHNIQUE. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1059–1064. doi: 10.1073/pnas.58.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lockhart J. A. Studies on the Mechanism of Stem Growth Inhibition by Visible Radiation. Plant Physiol. 1959 Jul;34(4):457–460. doi: 10.1104/pp.34.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marmé D., Mackenzie J. M., Boisard J., Briggs W. R. The isolation and partial characterization of a membrane fraction containing phytochrome. Plant Physiol. 1974 Sep;54(3):263–271. doi: 10.1104/pp.54.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mumford F. E., Jenner E. L. Purification and characterization of phytochrome from oat seedlings. Biochemistry. 1966 Nov;5(11):3657–3662. doi: 10.1021/bi00875a039. [DOI] [PubMed] [Google Scholar]
  32. Nickerson W. J., Merkel J. R. A Light Activation Phenomenon in the Enzymatic and Nonenzymatic Reduction of Tetrazolium Salts. Proc Natl Acad Sci U S A. 1953 Sep;39(9):901–905. doi: 10.1073/pnas.39.9.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parker M. W., Hendricks S. B., Borthwick H. A., Scully N. J. ACTION SPECTRUM FOR THE PHOTOPERIODIC CONTROL OF FLORAL INITIATION IN BILOXI SOYBEAN. Science. 1945 Aug 10;102(2641):152–155. doi: 10.1126/science.102.2641.152. [DOI] [PubMed] [Google Scholar]
  34. Pickard B. G., Thimann K. V. Transport and Distribution of Auxin during Tropistic Response. II. The Lateral Migration of Auxin in Phototropism of Coleoptiles. Plant Physiol. 1964 May;39(3):341–350. doi: 10.1104/pp.39.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pike C. S., Briggs W. R. Partial Purification and Characterization of a Phytochrome-degrading Neutral Protease from Etiolated Oat Shoots. Plant Physiol. 1972 Apr;49(4):521–530. doi: 10.1104/pp.49.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Poff K. L., Butler W. L. Absorbance changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum. Nature. 1974 Apr 26;248(5451):799–801. doi: 10.1038/248799a0. [DOI] [PubMed] [Google Scholar]
  37. Quail P. H., Schäfer E. Particle-bound phytochrome: a function of light dose and steady-state level of the far-red-absorbing form. J Membr Biol. 1974;15(4):393–404. doi: 10.1007/BF01870097. [DOI] [PubMed] [Google Scholar]
  38. Racker E., Stoeckenius W. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem. 1974 Jan 25;249(2):662–663. [PubMed] [Google Scholar]
  39. Roux S. J., Hillman W. S. The effect of glutaraldehyde and two monoaldehydes on phytochrome. Arch Biochem Biophys. 1969 May;131(2):423–429. doi: 10.1016/0003-9861(69)90414-7. [DOI] [PubMed] [Google Scholar]
  40. Roux S. J., Yguerabide J. Photoreversible conductance changes induced by phytochrome in model lipid membranes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):762–764. doi: 10.1073/pnas.70.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rubinstein B., Drury K. S., Park R. B. Evidence for bound phytochrome in oat seedlings. Plant Physiol. 1969 Jan;44(1):105–109. doi: 10.1104/pp.44.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. SETLOW R. Action spectroscopy. Adv Biol Med Phys. 1957;5:37–74. doi: 10.1016/b978-1-4832-3111-2.50005-5. [DOI] [PubMed] [Google Scholar]
  43. SHUGAR D. Photosensibilisation des enzymes et des dérivés indoliques par la riboflavine. Bull Soc Chim Biol (Paris) 1951;33(7):710–718. [PubMed] [Google Scholar]
  44. Satter R. L., Applewhite P. B., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: V. Evidence against Acetylcholine Participation. Plant Physiol. 1972 Oct;50(4):523–525. doi: 10.1104/pp.50.4.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Satter R. L., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: III. Interactions between an Endogenous Rhythm and Phytochrome in Control of Potassium Flux and Leaflet Movement. Plant Physiol. 1971 Dec;48(6):740–746. doi: 10.1104/pp.48.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Satter R. L., Galston A. W. Potassium flux: a common feature of albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science. 1971 Oct 29;174(4008):518–520. doi: 10.1126/science.174.4008.518. [DOI] [PubMed] [Google Scholar]
  47. Satter R. L., Marinoff P., Galston A. W. Phytochrome-controlled Nyctinasty in Albizzia julibrissin: IV. Auxin Effects on Leaflet Movement and K Flux. Plant Physiol. 1972 Aug;50(2):235–241. doi: 10.1104/pp.50.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Saunders J. A., McClure J. W. Acetylcholine Inhibition of Phytochrome-mediated Increases in a Flavonoid and in Phenylalanine Ammonia-Lyase Activity of Etiolated Barley Plumules. Plant Physiol. 1973 Feb;51(2):407–408. doi: 10.1104/pp.51.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schneider M. J., Stimson W. R. Contributions of photosynthesis and phytochrome to the formation of anthocyanin in turnip seedlings. Plant Physiol. 1971 Sep;48(3):312–315. doi: 10.1104/pp.48.3.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schrank A. R. NOTE ON THE EFFECT OF UNILATERAL ILLUMINATION ON THE TRANSVERSE ELECTRICAL POLARITY IN THE AVENA COLEOPTILE. Plant Physiol. 1946 Jul;21(3):362–365. doi: 10.1104/pp.21.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Siegelman H. W., Hendricks S. B. Photocontrol of Alcohol, Aldehyde, and Anthocyanin Production in Apple Skin. Plant Physiol. 1958 Nov;33(6):409–413. doi: 10.1104/pp.33.6.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Siegelman H. W., Hendricks S. B. Photocontrol of Anthocyanin Formation in Turnip and Red Cabbage Seedlings. Plant Physiol. 1957 Sep;32(5):393–398. doi: 10.1104/pp.32.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Siegelman H. W., Hendricks S. B. Purification and properties of phytochrome: a chromoprotein regulating plant growth. Fed Proc. 1965 Jul-Aug;24(4):863–867. [PubMed] [Google Scholar]
  54. Tanada T. A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic Acid. Proc Natl Acad Sci U S A. 1968 Feb;59(2):376–380. doi: 10.1073/pnas.59.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tanada T. On the involvement of acetylcholine in phytochrome action. Plant Physiol. 1972 May;49(5):860–861. doi: 10.1104/pp.49.5.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tobin E. M., Briggs W. R. Phytochrome in Embryos of Pinus palustris. Plant Physiol. 1969 Jan;44(1):148–150. doi: 10.1104/pp.44.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tobin E. M., Briggs W. R. Studies on the protein comformation of phytochrome. Photochem Photobiol. 1973 Dec;18(6):487–495. doi: 10.1111/j.1751-1097.1973.tb06454.x. [DOI] [PubMed] [Google Scholar]
  58. White J. M., Pike C. S. Rapid Phytochrome-mediated Changes in Adenosine 5'-Triphosphate Content of Etiolated Bean Buds. Plant Physiol. 1974 Jan;53(1):76–79. doi: 10.1104/pp.53.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Withrow R. B., Klein W. H., Elstad V. Action Spectra of Photomorphogenic Induction and Its Photoinactivation. Plant Physiol. 1957 Sep;32(5):453–462. doi: 10.1104/pp.32.5.453. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES