Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1986 Jan;6(1):265–276. doi: 10.1128/mcb.6.1.265

DNA sequence homology between the terminal inverted repeats of Shope fibroma virus and an endogenous cellular plasmid species.

C Upton, G McFadden
PMCID: PMC367507  PMID: 3023828

Abstract

DNA hybridization experiments indicate that the genome of a tumorigenic poxvirus. Shope fibroma virus (SFV), possesses sequence homology with DNA isolated from uninfected rabbit cells. Southern blotting experiments, either with high-complexity rabbit DNA as probe and SFV restriction fragments as targets or with high-specific activity, 32P-labeled, cloned SFV sequences as probes and rabbit DNA as target, indicate that the homologous sequences map at two locations within the viral genome, one in each copy of the terminal inverted repeat sequences. Unexpectedly, Southern blots revealed that the homologous host sequences reside in a rabbit extrachromosomal DNA element. This autonomous low-molecular-weight DNA species could be specifically amplified by cycloheximide treatment and was shown by isopycnic centrifugation in cesium chloride-ethidium bromide to consist predominantly of covalently closed circular DNA molecules. DNA sequencing of pSIC-9, a cloned 1.9-kilobase fragment of the rabbit plasmid species, indicated extensive homology at the nucleotide level over a 1.5-kilobase stretch of the viral terminal inverted repeat. Analysis of open reading frames in both the plasmid and SFV DNA revealed that (i) the N-terminal 157-amino acid sequence of a potential 514-amino acid SFV polypeptide is identical to the N-terminal 157 amino acids of one pSIC-9 open reading frame, and (ii) a second long pSIC-9 open reading frame of 361 amino acids, although significantly diverged from the comparable nucleotide sequence in the virus, possessed considerable homology to a family of cellular protease inhibitors, including alpha 1-antichymotrypsin, alpha 1-antitrypsin, and antithrombin III. The potential role of such cellular plasmid-like DNA species as a mediator in the exchange of genetic information between the host cell and a cytoplasmically replicating poxvirus is discussed.

Full text

PDF
266

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archard L. C., Mackett M., Barnes D. E., Dumbell K. R. The genome structure of cowpox virus white pock variants. J Gen Virol. 1984 May;65(Pt 5):875–886. doi: 10.1099/0022-1317-65-5-875. [DOI] [PubMed] [Google Scholar]
  2. BEARCROFT W. G., JAMIESON M. F. An outbreak of subcutaneous tumours in rhesus monkeys. Nature. 1958 Jul 19;182(4629):195–196. doi: 10.1038/182195a0. [DOI] [PubMed] [Google Scholar]
  3. Bertelsen A. H., Humayun M. Z., Karfopoulos S. G., Rush M. G. Molecular characterization of small polydisperse circular deoxyribonucleic acid from an African green monkey cell line. Biochemistry. 1982 Apr 27;21(9):2076–2085. doi: 10.1021/bi00538a015. [DOI] [PubMed] [Google Scholar]
  4. Block W., Upton C., McFadden G. Tumorigenic poxviruses: genomic organization of malignant rabbit virus, a recombinant between Shope fibroma virus and myxoma virus. Virology. 1985 Jan 15;140(1):113–124. doi: 10.1016/0042-6822(85)90450-7. [DOI] [PubMed] [Google Scholar]
  5. Blomquist M. C., Hunt L. T., Barker W. C. Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7363–7367. doi: 10.1073/pnas.81.23.7363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown J. P., Twardzik D. R., Marquardt H., Todaro G. J. Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. Nature. 1985 Feb 7;313(6002):491–492. doi: 10.1038/313491a0. [DOI] [PubMed] [Google Scholar]
  7. Calabretta B., Robberson D. L., Barrera-Saldaña H. A., Lambrou T. P., Saunders G. F. Genome instability in a region of human DNA enriched in Alu repeat sequences. Nature. 1982 Mar 18;296(5854):219–225. doi: 10.1038/296219a0. [DOI] [PubMed] [Google Scholar]
  8. Chandra T., Stackhouse R., Kidd V. J., Robson K. J., Woo S. L. Sequence homology between human alpha 1-antichymotrypsin, alpha 1-antitrypsin, and antithrombin III. Biochemistry. 1983 Oct 25;22(22):5055–5061. doi: 10.1021/bi00291a001. [DOI] [PubMed] [Google Scholar]
  9. DeLap R. J., Rush M. G. Change in quantity and size distribution of small circular DNAs during development of chicken bursa. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5855–5859. doi: 10.1073/pnas.75.12.5855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delange A. M., Macaulay C., Block W., Mueller T., McFadden G. Tumorigenic poxviruses: construction of the composite physical map of the Shope fibroma virus genome. J Virol. 1984 May;50(2):408–416. doi: 10.1128/jvi.50.2.408-416.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dumbell K. R., Archard L. C. Comparison of white pock (h) mutants of monkeypox virus with parental monkeypox and with variola-like viruses isolated from animals. Nature. 1980 Jul 3;286(5768):29–32. doi: 10.1038/286029a0. [DOI] [PubMed] [Google Scholar]
  12. Esposito J. J., Cabradilla C. D., Nakano J. H., Obijeski J. F. Intragenomic sequence transposition in monkeypox virus. Virology. 1981 Mar;109(2):231–243. doi: 10.1016/0042-6822(81)90495-5. [DOI] [PubMed] [Google Scholar]
  13. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  14. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  15. Holowczak J. A. Poxvirus DNA. Curr Top Microbiol Immunol. 1982;97:27–79. doi: 10.1007/978-3-642-68318-3_2. [DOI] [PubMed] [Google Scholar]
  16. Jacquemont B., Richard M. H., Grange J. Failure to detect homology between the DNA of the Shope fibroma virus and the DNA of the sensitive cell. J Gen Virol. 1971 Mar;10(3):237–242. doi: 10.1099/0022-1317-10-3-237. [DOI] [PubMed] [Google Scholar]
  17. Jones R. S., Potter S. S. L1 sequences in HeLa extrachromosomal circular DNA: evidence for circularization by homologous recombination. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1989–1993. doi: 10.1073/pnas.82.7.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones T. R., Hyman R. W. Specious hybridization between herpes simplex virus DNA and human cellular DNA. Virology. 1983 Dec;131(2):555–560. doi: 10.1016/0042-6822(83)90521-4. [DOI] [PubMed] [Google Scholar]
  19. Kwoh T. J., Engler J. A. The nucleotide sequence of the chicken thymidine kinase gene and the relationship of its predicted polypeptide to that of the vaccinia virus thymidine kinase. Nucleic Acids Res. 1984 May 11;12(9):3959–3971. doi: 10.1093/nar/12.9.3959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Long G. L., Chandra T., Woo S. L., Davie E. W., Kurachi K. Complete sequence of the cDNA for human alpha 1-antitrypsin and the gene for the S variant. Biochemistry. 1984 Oct 9;23(21):4828–4837. doi: 10.1021/bi00316a003. [DOI] [PubMed] [Google Scholar]
  21. McFadden G., Dales S. Biogenesis of poxviruses: mirror-image deletions in vaccinia virus DNA. Cell. 1979 Sep;18(1):101–108. doi: 10.1016/0092-8674(79)90358-1. [DOI] [PubMed] [Google Scholar]
  22. Moyer R. W., Graves R. L., Rothe C. T. The white pock (mu) mutants of rabbit poxvirus. III. Terminal DNA sequence duplication and transposition in rabbit poxvirus. Cell. 1980 Nov;22(2 Pt 2):545–553. doi: 10.1016/0092-8674(80)90364-5. [DOI] [PubMed] [Google Scholar]
  23. Peden K., Mounts P., Hayward G. S. Homology between mammalian cell DNA sequences and human herpesvirus genomes detected by a hybridization procedure with high-complexity probe. Cell. 1982 Nov;31(1):71–80. doi: 10.1016/0092-8674(82)90406-8. [DOI] [PubMed] [Google Scholar]
  24. Postlethwaite R. Molluscum contagiosum. Arch Environ Health. 1970 Sep;21(3):432–452. doi: 10.1080/00039896.1970.10667262. [DOI] [PubMed] [Google Scholar]
  25. Puga A., Cantin E. M., Notkins A. L. Homology between murine and human cellular DNA sequences and the terminal repetition of the S component of herpes simplex virus type 1 DNA. Cell. 1982 Nov;31(1):81–87. doi: 10.1016/0092-8674(82)90407-x. [DOI] [PubMed] [Google Scholar]
  26. Rüger R., Bornkamm G. W., Fleckenstein B. Human cytomegalovirus DNA sequences with homologies to the cellular genome. J Gen Virol. 1984 Aug;65(Pt 8):1351–1364. doi: 10.1099/0022-1317-65-8-1351. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schindler C. W., Rush M. G. The KpnI family of long interspersed nucleotide sequences is present on discrete sizes of circular DNA in monkey (BSC-1) cells. J Mol Biol. 1985 Jan 20;181(2):161–173. doi: 10.1016/0022-2836(85)90082-8. [DOI] [PubMed] [Google Scholar]
  29. Shmookler Reis R. J., Lumpkin C. K., Jr, McGill J. R., Riabowol K. T., Goldstein S. Amplification of inter-Alu extrachromosomal DNA during cellular ageing: retraction and explanation. Nature. 1985 Jul 11;316(6024):167–167. doi: 10.1038/316167a0. [DOI] [PubMed] [Google Scholar]
  30. Smith C. A., Vinograd J. Small polydisperse circular DNA of HeLa cells. J Mol Biol. 1972 Aug 21;69(2):163–178. doi: 10.1016/0022-2836(72)90222-7. [DOI] [PubMed] [Google Scholar]
  31. Stanfield S. W., Helinski D. R. Cloning and characterization of small circular DNA from Chinese hamster ovary cells. Mol Cell Biol. 1984 Jan;4(1):173–180. doi: 10.1128/mcb.4.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stanfield S. W., Lengyel J. A. Small circular DNA of Drosophila melanogaster: chromosomal homology and kinetic complexity. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6142–6146. doi: 10.1073/pnas.76.12.6142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stanfield S., Helinski D. R. Small circular DNA in Drosophila melanogaster. Cell. 1976 Oct;9(2):333–345. doi: 10.1016/0092-8674(76)90123-9. [DOI] [PubMed] [Google Scholar]
  34. Strayer D. S., Skaletsky E., Cabirac G. F., Sharp P. A., Corbeil L. B., Sell S., Leibowitz J. L. Malignant rabbit fibroma virus causes secondary immunosuppression in rabbits. J Immunol. 1983 Jan;130(1):399–404. [PubMed] [Google Scholar]
  35. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  36. Wills A., Delange A. M., Gregson C., Macaulay C., McFadden G. Physical characterization and molecular cloning of the Shope fibroma virus DNA genome. Virology. 1983 Oct 30;130(2):403–414. doi: 10.1016/0042-6822(83)90095-8. [DOI] [PubMed] [Google Scholar]
  37. Wittek R. Organization and expression of the poxvirus genome. Experientia. 1982 Mar 15;38(3):285–297. doi: 10.1007/BF01949349. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES