Abstract
Maltose fermentation in Saccharomyces spp. requires the presence of a dominant MAL locus. The MAL6 locus has been cloned and shown to encode the structural genes for maltose permease (MAL61), maltase (MAL62), and a positively acting regulatory gene (MAL63). Induction of the MAL61 and MAL62 gene products requires the presence of maltose and the MAL63 gene. Mutations within the MAL63 gene produce nonfermenting strains unable to induce the two structural gene products. Reversion of these mal63 nonfermenters to maltose fermenters nearly always leads to the constitutive expression of maltase and maltose permease, and constitutivity is always linked to MAL6. We demonstrated that for one such revertant, strain C2, constitutivity did not require the MAL63 gene, since deletion disruption of this gene did not affect the constitutive expression of the structural genes. In addition, constitutivity was trans acting. Deletion disruption of the MAL6-linked structural genes for maltase and maltose permease in this strain did not affect the constitutive expression of a second, unlinked maltase structural gene. We isolated new maltose-fermenting revertants of a nonfermenting strain which carried a deletion disruption of the MAL63 gene. All 16 revertants isolated expressed maltase constitutively. In one revertant studied in detail, strain R10, constitutive expression was demonstrated to be linked to MAL6, semidominant, trans acting, and residing outside the MAL63-MAL61-MAL62 genes. From these studies we propose the existence of a second trans-acting regulatory gene at the MAL6 locus. We call this new gene MAL64. We mapped the MAL64 gene 2.3 centimorgans to the left of MAL63. The role of the MAL64 gene product in maltose fermentation is discussed.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnett J. A. The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem. 1976;32:125–234. doi: 10.1016/s0065-2318(08)60337-6. [DOI] [PubMed] [Google Scholar]
- Cohen J. D., Goldenthal M. J., Buchferer B., Marmur J. Mutational analysis of the MAL1 locus of Saccharomyces: identification and functional characterization of three genes. Mol Gen Genet. 1984;196(2):208–216. doi: 10.1007/BF00328052. [DOI] [PubMed] [Google Scholar]
- Cohen J. D., Goldenthal M. J., Chow T., Buchferer B., Marmur J. Organization of the MAL loci of Saccharomyces. Physical identification and functional characterization of three genes at the MAL6 locus. Mol Gen Genet. 1985;200(1):1–8. doi: 10.1007/BF00383304. [DOI] [PubMed] [Google Scholar]
- Dubin R. A., Needleman R. B., Gossett D., Michels C. A. Identification of the structural gene encoding maltase within the MAL6 locus of Saccharomyces carlsbergensis. J Bacteriol. 1985 Nov;164(2):605–610. doi: 10.1128/jb.164.2.605-610.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Federoff H. J., Cohen J. D., Eccleshall T. R., Needleman R. B., Buchferer B. A., Giacalone J., Marmur J. Isolation of a maltase structural gene from Saccharomyces carlsbergensis. J Bacteriol. 1982 Mar;149(3):1064–1070. doi: 10.1128/jb.149.3.1064-1070.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan N. A., Eaton N. R. Genetic control of maltase formation in yeast. I. Strains producing high and low basal levels of enzyme. Mol Gen Genet. 1971;112(4):317–322. doi: 10.1007/BF00334433. [DOI] [PubMed] [Google Scholar]
- Lloyd J. B., Whelan W. J. An improved method for enzymic determination of glucose in the presence of maltose. Anal Biochem. 1969 Sep;30(3):467–470. doi: 10.1016/0003-2697(69)90143-2. [DOI] [PubMed] [Google Scholar]
- Michels C. A., Needleman R. B. The dispersed, repeated family of MAL loci in Saccharomyces spp. J Bacteriol. 1984 Mar;157(3):949–952. doi: 10.1128/jb.157.3.949-952.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortimer R. K., Hawthorne D. C. Genetic mapping in yeast. Methods Cell Biol. 1975;11:221–233. doi: 10.1016/s0091-679x(08)60325-8. [DOI] [PubMed] [Google Scholar]
- Needleman R. B., Federoff H. J., Eccleshall T. R., Buchferer B., Marmur J. Purification and characterization of an alpha-glucosidase from Saccharomyces carlsbergensis. Biochemistry. 1978 Oct 31;17(22):4657–4661. doi: 10.1021/bi00615a011. [DOI] [PubMed] [Google Scholar]
- Needleman R. B., Kaback D. B., Dubin R. A., Perkins E. L., Rosenberg N. G., Sutherland K. A., Forrest D. B., Michels C. A. MAL6 of Saccharomyces: a complex genetic locus containing three genes required for maltose fermentation. Proc Natl Acad Sci U S A. 1984 May;81(9):2811–2815. doi: 10.1073/pnas.81.9.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman R. B., Michels C. Repeated family of genes controlling maltose fermentation in Saccharomyces carlsbergensis. Mol Cell Biol. 1983 May;3(5):796–802. doi: 10.1128/mcb.3.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman R., Eaton N. R. Selection of yeast mutants constitutive for maltase synthesis. Mol Gen Genet. 1974;133(2):135–140. doi: 10.1007/BF00264834. [DOI] [PubMed] [Google Scholar]
- Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 1983;101:228–245. doi: 10.1016/0076-6879(83)01017-4. [DOI] [PubMed] [Google Scholar]
- Ouwehand J., van Wijk R. Regulation of maltase and -methylglucosidase synthesis in genetically defined strains of Saccharomyces carlsbergensis. Mol Gen Genet. 1972;117(1):30–38. doi: 10.1007/BF00268834. [DOI] [PubMed] [Google Scholar]
- Panek A. D., Sampaio A. L., Braz G. C., Baker S. J., Mattoon J. R. Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization. Cell Mol Biol Incl Cyto Enzymol. 1979;25(5):345–354. [PubMed] [Google Scholar]
- Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
- Serrano R. Energy requirements for maltose transport in yeast. Eur J Biochem. 1977 Oct 17;80(1):97–102. doi: 10.1111/j.1432-1033.1977.tb11861.x. [DOI] [PubMed] [Google Scholar]
- Van Wijk R., Ouwehand J., van den Bos T., Koningsberger V. V. Induction and catabolite repression of alpha-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis. Biochim Biophys Acta. 1969 Jul 22;186(1):178–191. doi: 10.1016/0005-2787(69)90501-2. [DOI] [PubMed] [Google Scholar]
- Zimmermann F. K., Eaton N. R. Genetics of induction and catabolite repression of Maltese synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1974;134(3):261–272. doi: 10.1007/BF00267720. [DOI] [PubMed] [Google Scholar]
- de Kroon R. A., Koningsberger V. V. An inducible transport system for alpha-glucosides in protoplasts of Saccharomyces carlsbergensis. Biochim Biophys Acta. 1970 Apr 15;204(2):590–609. doi: 10.1016/0005-2787(70)90178-4. [DOI] [PubMed] [Google Scholar]
- ten Berge A. M., Zoutewelle G., Needleman R. B. Regulation of maltose fermentation in Saccharomyces carlsbergensis. 3. Constitutive mutations at the MAL6-locus and suppressors changing a constitutive phenotype into a maltose negative phenotype. Mol Gen Genet. 1974;131(2):113–121. doi: 10.1007/BF00266147. [DOI] [PubMed] [Google Scholar]
- ten Berge A. M., Zoutewelle G., van de Poll K. W., Bloemers H. P. Regulation of maltose fermentation in Saccharomyces carlsbergensis. II. Properties of a constitutive MAL6-mutant. Mol Gen Genet. 1973 Sep 5;125(2):139–146. doi: 10.1007/BF00268867. [DOI] [PubMed] [Google Scholar]
- ten Berge A. M., Zoutewelle G., van de Poll K. W. Regulation of maltose fermentation in Saccharomyces carlsbergensis. I. The function of the gene MAL6, as recognized by mal6-mutants. Mol Gen Genet. 1973 Jul 2;123(3):233–246. doi: 10.1007/BF00271242. [DOI] [PubMed] [Google Scholar]